Page 178 - Determinants and Their Applications in Mathematical Physics
P. 178

4.12 Hankelians 5  163

          where f is an arbitrary function of t. Then, it is proved that Section 6.5.2
          on Toda equations that

                                2
                              D (log A n )=  A n+1 A n−1  .        (4.12.47)
                                              A 2
                                                n
          Put
                                         2
                                  g n = D (log A n ).              (4.12.48)
          Theorem 4.58. g n satisfies the differential–difference equation
                                      n−1
                                                 2
                            g n = ng 1 +  (n − r)D (log g r ).
                                      r=1
          Proof. From (4.12.47),

                                     A r+1 A r−1
                                               = g r ,
                                        A 2
                                          r
                               s       s          s
                                 A r+1   A r−1

                                               =    g r ,
                              r=1  A r  r=1  A r  r=1
          which simplifies to
                                             s
                                  A s+1
                                       = A 1   g r .               (4.12.49)
                                            r=1
                                   A s
          Hence,
                        n−1             n−1 s
                            A s+1    n−1

                                 = A 1         g r ,
                         s=1  A s       s=1 r=1
                                      n−1

                              A n = A n   g n−r
                                     1
                                           r
                                      r=1
                                      n−1

                                 = A n    g r  ,                   (4.12.50)
                                     1     n−r
                                      r=1
                                             n−1

                           log A n = n log A 1 +  (n − r) log g r .  (4.12.51)
                                             r=1
          The theorem appears after differentiating twice with respect to t and
          referring to (4.12.48).
            In certain cases, the differential–difference equation can be solved and
          A n evaluated from (4.12.50). For example, let
                                         e t
                                     	      
 p
                                 f =
                                       1 − e t
   173   174   175   176   177   178   179   180   181   182   183