Page 180 - Determinants and Their Applications in Mathematical Physics
P. 180

4.13 Hankelians 6  165
                                                        (p)      (1)
          Substituting this formula into (4.12.50) with A n → E n and E n = f,

                   	      
 p n−1                              r
                      e t                               e t
              (p)
             E   =                (n − r)(p + n − r − 1)       ,   (4.12.57)
                     1 − e t                         (1 − e )
              n                                           t 2
                             r=1
          which yields the stated formula.
            Note that the substitution x = e yields
                                        t
                                     ψ (1)  = ψ m ,
                                      m
                                     E (1)  = E n ,
                                      n
                  (p)
          so that ψ m may be regarded as a further generalization of the geometric
                        (p)
          series ψ m and E n is a generalization of Lawden’s determinant E n .
          Exercise. If
                                        sec x
                                      /
                                          p
                                  f =            ,
                                        cosec x
                                            p
          prove that
                                                n−1

                                  sec n(p+n−1) x
                           A n =                   r!(p) r .
                                  cosec n(p+n−1)
                                                r=1
          4.13 Hankelians 6
          4.13.1  Two Matrix Identities and Their Corollaries
          Define three matrices M, K, and N of order n as follows:

                                            (symmetric),
                        M =[α ij ] n
                        K =[2 i+j−1  k i+j−2 ] n  (Hankel),         (4.13.1)
                                            (lower triangular),
                        N =[β ij ] n
          where
                                    j−1
                                (−1)   u i−j + u i+j−2 ,j ≤ i
                         α ij =     i−1                             (4.13.2)
                                (−1)   u j−i + u i+j+2 ,  j ≥ i;
                               N

                         u r =   a j f r (x j ),  a j arbitrary;    (4.13.3)
                              j=1
                                /                             0
                                     +               +
                              1
                       f r (x)=  (x +  1+ x ) +(x −    1+ x )   ;   (4.13.4)
                                            2 r
                                                            2 r
                              2
                               N

                          k r =  a j x ;                            (4.13.5)
                                    r
                                    j
                              j=1
                         β ij =0,   j > i or i + j odd,
   175   176   177   178   179   180   181   182   183   184   185