Page 174 - Determinants and Their Applications in Mathematical Physics
P. 174

4.12 Hankelians 5  159


                 D {Q n (t, t)} = C n (t) C 1 (t) C 2 (t) ··· C n−1 (t)
                   n

                   τ
                                                          n

                             =(−1)  n−1   C 1 (t) C 2 (t) ··· C n−1 (t) C n (t)
                                                                  n
                             =(−1) n−1 F n .                       (4.12.23)
                        (n)
          The cofactors Q  ,1 ≤ i ≤ n, are independent of τ.
                        i1
                     (n)      (n)
                   Q   (t)= E    = G n−1 ,
                     11       11
                     (n)
                   Q n1  (t)=(−1)  n+1   C 1 (t) C 2 (t) C 3 (t) ··· C n−1 (t)   n−1
                          =(−1) n+1 F n−1 ,
                   (n)
                 Q   (t, τ)=(−1)  n+1   C 1 (τ) C 2 (t) C 3 (t) ··· C n−1 (t)    .(4.12.24)
                                                               n−1
                   1n
          Hence,
                      (n)
                 D {Q   (t, t)} =0,  1 ≤ r ≤ n − 2
                  r
                  τ
                      1n
              D n−1 {Q (n) (t, t)} =(−1)  n+1     C n (t) C 2 (t) C 3 (t) ··· C n−1 (t)
                                                                  n−1
                τ     1n

                              = − C 2 (t) C 3 (t) ··· C n−1 (t) C n (t)

                                                             n−1
                              = −G n−1 ,
                      (n)
                D {Q    (t, t)} = −D t (G n−1 ),
                  n
                  τ   1n
                     Q (n) (t, τ)= Q n−1 (t, τ),
                      nn
                     Q (n) (t, t)= E n−1 ,
                       nn
                                  0,              1 ≤ r ≤ n − 2

                 D {Q (n) (t, t)} =  (−1) F n−1 ,  r = n − 1       (4.12.25)
                  r
                                      n
                  τ   nn
                                  (−1) D t (F n−1 ),r = n.
                                      n
                       (n)
                     Q     (t)= G n−2 .                            (4.12.26)
                       1n,1n
            Applying the Jacobi identity to the cofactors of the corner elements of
          Q n ,
                             (n)     (n)
                            Q 11  (t) Q  (t, τ)         (n)
                                     1n        = Q n (t, τ)Q  (t),
                             (n)     (n)
                           Q n1  (t) Q nn (t, τ)
                                                        1n,1n
                                     (n)
                         G n−1
                                   Q   (t, τ)
                                     1n
                                     (n)       = Q n (t, τ)G n−2 .  (4.12.27)
                      (−1)   F n−1  Q nn (t, τ)
                          n+1
          The first column of the determinant is independent of τ, hence, differenti-
          ating n times with respect to τ and putting τ = t,

                       G n−1                          n+1
                                    D t (G n−1 )
                        n+1                       =(−1)  F n G n−2 ,
                                     n
                    (−1)   F n−1  (−1) D t (F n−1 )
                   G n−1 D t (F n−1 ) − F n−1 D t (G n−1 )= −F n G n−2 ,

                                          G n−1   F n G n−2
                                                =    2    .
                                      D t
                                          F n−1     F
                                                     n−1
   169   170   171   172   173   174   175   176   177   178   179