Page 273 - Determinants and Their Applications in Mathematical Physics
P. 273

258   6. Applications of Determinants in Mathematical Physics

          Hence, referring to the first equation in (4.5.10),
                           (n+1) 2

                         B      y   =(2n +1)B n B n+1 ,
                          1,n+1  2n
                                          (n+1)        (n)
              B n B n+1 (y 2n−1 − y 2n+1 )= B n B 11  − B n+1 B 11
                                       (n+1)    (n+1)        (n+1)
                                    = B n+1,n+1 B 11  − B n+1 B 1,n+1;1,n+1
                                         (n+1) 2

                                    = B       .
                                        1,n+1
          Hence,
                             y (y 2n−1 − y 2n+1 )=2n +1,

                              2n
          which proves the theorem when n is even.
          6.6 The Matsukidaira–Satsuma Equations


          6.6.1  A System With One Continuous and One Discrete
                 Variable

          Let A (n) (r) denote the Turanian–Wronskian of order n defined as follows:


                                A (n) (r)= f r+i+j−2 ,               (6.6.1)


                                                  n
          where f s = f s (x) and f = f s+1 . Then,

                              s
                                 (n)      (n−1)
                               A   (r)= A     (r +2),
                                 11
                                 (n)      (n−1)
                               A   (r)= A     (r +1).
                                 1n
          Let
                                    τ r = A (n) (r).                 (6.6.2)
          Theorem 6.7.

                    τ             τ      τ          τ          τ
                     r+1   τ r     r  r    =    r+1  τ r+1      r  τ r

                                τ          τ          τ
                          τ r−1     τ r          τ r   r−1  τ r−1

                     τ r
                                 r          r
          for all values of n and all differentiable functions f s (x).
          Proof. Each of the functions


                               τ r±1 ,τ r+2 ,τ ,τ ,τ r±1

                                           r  r
          can be expressed as a cofactor of A (n+1)  with various parameters:
                                        (n+1)
                                  τ r = A     (r),
                                        n+1,n+1
                                             (n+1)
                                τ r+1 =(−1) A 1,n+1 (r)
                                          n
                                             (n+1)
                                    =(−1) A      (r)
                                          n
                                             n+1,1
                                        (n+1)
                                τ r+2 = A   (r).
                                        11
   268   269   270   271   272   273   274   275   276   277   278