Page 276 - Determinants and Their Applications in Mathematical Physics
P. 276

6.6 The Matsukidaira–Satsuma Equations  261

          6.6.2  A System With Two Continuous and Two Discrete
                 Variables

          Let A (n) (r, s) denote the two-way Wronskian of order n defined as follows:


                              A (n) (r, s)= f r+i−1,s+j−1 ,          (6.6.7)


                                                     n
          where f rs = f rs (x, y), (f rs ) x = f r,s+1 , and (f rs ) y = f r+1,s .
            Let
                                   τ rs = A (n) (r, s).              (6.6.8)
          Theorem 6.10.

                       τ

                        r+1,s  τ r+1,s−1      (τ rs ) xy  (τ rs ) y
                               τ r,s−1  (τ rs ) x  τ rs

                        τ rs


                          =     (τ rs ) y  (τ r,s−1 ) y      (τ r+1,s ) x  τ r+1,s
                                      τ r,s−1   (τ rs ) x  τ rs

                               τ rs
          for all values of n and all differentiable functions f rs (x, y).
          Proof.
                                          (n+1)
                                   τ rs = A     (r, s),
                                          n+1,n+1
                                           (n+1)
                                 τ r+1,s = −A 1,n+1 (r, s),
                                           (n+1)
                                 τ r,s+1 = −A   (r, s),
                                           n+1,1
                                          (n+1)
                              τ r+1,s+1 = A   (r, s).
                                          11
          Hence, applying the Jacobi identity,

                   τ
                    r+1,s+1  τ r+1,s+1      = A (n+1) (r, s)A (n+1)  (r, s)

                    τ r,s+1   τ rs
                                                  1,n+1;1,n+1
                                    = A (n+1) (r, s)A (n−1) (r +1,s +1).
          Replacing s by s − 1,

                      τ                (n+1)        (n−1)
                     r+1,s  τ r+1,s−1    = A  (r, s − 1)A  (r +1,s),  (6.6.9)
                            τ r,s−1

                     τ rs
                                        (n+1)
                              (τ rs ) x = −A  (r, s),
                                        n+1,n
                                        (n+1)
                              (τ rs ) y = −A  (r, s),
                                        n,n+1
                             (τ rs ) xy = A (n+1) (r, s).
                                       nn
          Hence, applying the Jacobi identity,

                                        (n+1)     (n+1)
                        (τ rs ) xy  (τ rs ) y    = A  (r, s)A n,n+1;n,n+1 (r, s)
                        (τ rs ) x  τ rs
                                    = A (n+1) (r, s)A (n−1) (r, s)  (6.6.10)
                                         (n+1)
                            (τ r,s+1 ) y = −A  (r, s).
                                         n1
   271   272   273   274   275   276   277   278   279   280   281