Page 281 - Determinants and Their Applications in Mathematical Physics
P. 281

266   6. Applications of Determinants in Mathematical Physics

                                              1
          c. D t (φ ij )= φ i0 φ j2 − φ i1 φ j1 + φ i2 φ j0 − (φ i+3,j + φ i,j+3 ).
                                              2
                                  2
          Proof. Put f r = −g r = b in identity (D).
                                  r
                   2
                       2
                                             2
                                         2

                 (b − b )A =         δ rs (b − b )e r +2(b r − b s ) A A rj
                          ij
                                                              is
                   i   j                 r   s
                               r  s

                            = 0+2        (b r − b s )A A rj
                                                  is
                                    r  s

                            =2     A is  b r A rj  − 2  A rj  b s A is
                                 s     r           r      s
                            =2(ψ 0i ψ 1j − ψ 0j ψ 1i ).
          It follows that if
                                               2
                                F ij =2ψ 0i ψ 1j − b A ,
                                                  ij
                                               i
          then
                                      F ji = F ij .
          Furthermore, if G ij is any function with the property
                                     G ji = −G ij ,
          then

                                        G ij F ij =0.               (6.7.17)
                                   i  j
          The proof is trivial and is obtained by interchanging the dummy suffixes.
            The proof of (a) can now be obtained by expanding the quadruple series

                            S =      (b b − b b )b s A A rs
                                                   pq
                                      i j
                                            j i
                                      p r   p r
                                p,q,r,s
          in two different ways and equating the results.

                    S =     b A pq  b b s A rs  −  b A pq  b b s A rs
                            i
                                                 j
                                                          i
                                     j
                            p        r           p        r
                         p,q     r,s          p,q     r,s
                      = φ i0 φ j1 − φ j0 φ i1 ,
          which is identical to the left side of (a). Also, referring to (6.7.17) with
          i, j → p, r,

                         S =    (b b − b b )   A pq   b s A rs
                                  i j
                                        j i
                                  p r   p r
                              p,r            q     s

                           =      i j   j i
                                (b b − b b )ψ 0p ψ 1r
                                  p r   p r
                              p,r
                              1                     2
                           =      (b b − b b )(F pr + b A )
                                                       pr
                                    i j
                                          j i
                              2     p r   p r       p
                                p,r
   276   277   278   279   280   281   282   283   284   285   286