Page 286 - Determinants and Their Applications in Mathematical Physics
P. 286

6.7 The Korteweg–de Vries Equation  271
                                        2
                               = −2    b b q e p e q ψ p ψ q A ,
                                                    pq
                                        p
                                    p,q
                             S =2R.                                 (6.7.40)
          Referring to (6.7.33), (6.7.28), and (6.7.35),
                                        2

                    T =    b p b q b r e p e q e r  ∂ θ r
                        p,q,r         ∂e p ∂e q

                      =6    b p b q e p e q ψ p ψ q  b r e r A A qr
                                                pr
                         p,q             r

                                          1
                      =6                  (b p + b q )A pq
                                         2           − ψ p ψ q
                            b p b q e p e q ψ p ψ q
                         p,q
                             2
                      =6    b b q e p e q ψ p ψ q A pq  − 6
                             p                    b p e p θ p  b q e q θ q
                         p,q                    p        q
                                 2
                      = −(3R +6v ).
                                 x
          Hence,
                                                       2
                           v xxx = −v t + R +2R − (3R +6v )
                                                       x
                                          2
                               = −(v t +6v ),
                                         x
          which completes the verification of the first form of solution of the KdV
          equation by means of partial derivatives with respect to the exponential
          functions.
          6.7.4  The Wronskian Solution
          Theorem 6.14. The determinant A in Theorem 6.7.1 can be expressed
          in the form
                               A = k n (e 1 e 2 ··· e n ) 1/2 W,

          where k n is independent of x and t, and W is the Wronskian defined as
          follows:
                                          j−1
                                  W = D     (φ i ) ,                (6.7.41)


                                         x
                                                n
          where
                                      1/2    −1/2
                              φ i = λ i e  + µ i e  ,               (6.7.42)
                                      i      i
                                              3
                               e i = exp(−b i x + b t + ε i ),      (6.7.43)
                                              i
                                   1
                                      n
                              λ i =     (b p + b i ),
                                   2
                                     p=1
                                    n

                              µ i =   (b p − b i ).                 (6.7.44)
                                   p=1
                                   p =i
   281   282   283   284   285   286   287   288   289   290   291