Page 285 - Determinants and Their Applications in Mathematical Physics
P. 285

270   6. Applications of Determinants in Mathematical Physics

          Hence,

                                               ∂v
                                  v x = −  b r e r
                                         r     ∂e r

                                    =    b r e r θ r .              (6.7.35)
                                       r
          Similarly,
                                             3
                                  v t = −   b e r θ r .             (6.7.36)
                                             r
                                         r
          From (6.7.35) and (6.7.23),


                                 =    b r δ qr θ r + e r  ∂θ r
                             ∂v x
                             ∂e q
                                    r             ∂e q

                                 = b q θ q +  b r e r  ∂θ r  .      (6.7.37)
                                          r     ∂e q
          Referring to (6.7.32),
                       2                   	             2

                                    +    b r δ pr  ∂θ r  + e r  ∂ θ r
                      ∂ v x
                                ∂θ q
                            = b q
                                ∂e p
                     ∂e p ∂e q
                                       r       ∂e q    ∂e p ∂e q
                                                     2

                            =(b p + b q )  ∂θ p  +  b r e r  ∂ θ r  .  (6.7.38)
                                      ∂e q
                                            r     ∂e p ∂e q
            To obtain a formula for v xxx , put y = v x in (6.7.22), apply (6.7.37) with
          q → p and r → q, and then apply (6.7.38):
                                                  2
                            2
                  v xxx =      ∂v x  +           ∂ v x
                           b e p
                            p           b p b q e p e q
                         p     ∂e p  p,q        ∂e p ∂e q

                            2
                      =    b e p b p θ p +    ∂θ q
                            p             b q e q
                         p              q     ∂e p

                                                             2

                        +    b p b q e p e q (b p + b q )  ∂θ p  +  b r e r  ∂ θ r
                          p,q                 ∂e q  r     ∂e p ∂e q
                      = Q + R + S + T                               (6.7.39)
          where, from (6.7.36), (6.7.32), and (6.7.31),
                                     3
                             Q =
                                    b e p θ p
                                     p
                                  p
                               = −v t
                                     2
                             R =            ∂θ p
                                    b b q e p e q
                                     p
                                  p,q       ∂e q
   280   281   282   283   284   285   286   287   288   289   290