Page 280 - Determinants and Their Applications in Mathematical Physics
P. 280

6.7 The Korteweg–de Vries Equation  265

          Eliminating the sum common to (6.7.3) and (6.7.5) and the sum common
          to (6.7.4) and (6.7.6),

                     v = D x (log A)=     A rs  −  b r ,             (6.7.7)
                                     r  s        r

                                    1
                                              ij
                          D x (A )= (b i + b j )A −     A A .        (6.7.8)
                                                          is
                               ij
                                                             rj
                                    2
                                                   r  s
          Returning to (A) and (B),
                                            3
                             D t (log A)=  b e r A ,                 (6.7.9)
                                                rr
                                            r
                                         r
                                              3
                              D t (A )= −    b e r A A .            (6.7.10)
                                                     rj
                                                  ir
                                   ij
                                              r
                                           r
                                                3
          Now return to (C) and (D) with f r = g r = b .
                                                r
                        3               2          2          3
                        b e r A rr  +  (b − b r b s + b )A rs  =  b ,  (6.7.11)
                        r               r          s          r
                     r            r  s                     r
                        3                  2         2
                        b e r A A rj  +   (b − b r b s + b )A A rj
                                                         is
                             ir
                        r                  r         s
                     r               r  s
                                  3
                                      3
                               1
                             = (b + b )A .                          (6.7.12)
                                         ij
                               2  i   j
          Eliminating the sum common to (6.7.9) and (6.7.11) and the sum common
          to (6.7.10) and (6.7.12),
                               3          2          2
                D t (log A)=   b −       (b − b r b s + b )A ,      (6.7.13)
                                                        rs
                               r          r          s
                            r       r  s
                                   2         2         1  3   3
                  D t (A )=      (b − b r b s + b )A A rj  − (b + b )A .(6.7.14)
                                                is
                       ij
                                                                 ij
                                                       2
                                   r         s            i   j
                            r   s
          The derivatives v x and v t can be evaluated in a convenient form with the
          aid of two functions ψ is and φ ij which are defined as follows:

                                 ψ is =  b A ,                      (6.7.15)
                                             rs
                                          i
                                          r
                                       r

                                 φ ij =  b ψ is ,
                                          j
                                          s
                                       s

                                    =        b b A rs
                                             i j
                                             r s
                                       r  s
                                    = φ ji .                        (6.7.16)
          They are definitions of ψ is and φ ij .
          Lemma. The function φ ij satisfies the three nonlinear recurrence rela-
          tions:
                             1
          a. φ i0 φ j1 − φ j0 φ i1 = (φ i+2,j − φ i,j+2 ),
                             2
                      1
          b. D x (φ ij )= (φ i+1,j + φ i,j+1 ) − φ i0 φ j0 ,
                      2
   275   276   277   278   279   280   281   282   283   284   285