Page 280 - Determinants and Their Applications in Mathematical Physics
P. 280
6.7 The Korteweg–de Vries Equation 265
Eliminating the sum common to (6.7.3) and (6.7.5) and the sum common
to (6.7.4) and (6.7.6),
v = D x (log A)= A rs − b r , (6.7.7)
r s r
1
ij
D x (A )= (b i + b j )A − A A . (6.7.8)
is
ij
rj
2
r s
Returning to (A) and (B),
3
D t (log A)= b e r A , (6.7.9)
rr
r
r
3
D t (A )= − b e r A A . (6.7.10)
rj
ir
ij
r
r
3
Now return to (C) and (D) with f r = g r = b .
r
3 2 2 3
b e r A rr + (b − b r b s + b )A rs = b , (6.7.11)
r r s r
r r s r
3 2 2
b e r A A rj + (b − b r b s + b )A A rj
is
ir
r r s
r r s
3
3
1
= (b + b )A . (6.7.12)
ij
2 i j
Eliminating the sum common to (6.7.9) and (6.7.11) and the sum common
to (6.7.10) and (6.7.12),
3 2 2
D t (log A)= b − (b − b r b s + b )A , (6.7.13)
rs
r r s
r r s
2 2 1 3 3
D t (A )= (b − b r b s + b )A A rj − (b + b )A .(6.7.14)
is
ij
ij
2
r s i j
r s
The derivatives v x and v t can be evaluated in a convenient form with the
aid of two functions ψ is and φ ij which are defined as follows:
ψ is = b A , (6.7.15)
rs
i
r
r
φ ij = b ψ is ,
j
s
s
= b b A rs
i j
r s
r s
= φ ji . (6.7.16)
They are definitions of ψ is and φ ij .
Lemma. The function φ ij satisfies the three nonlinear recurrence rela-
tions:
1
a. φ i0 φ j1 − φ j0 φ i1 = (φ i+2,j − φ i,j+2 ),
2
1
b. D x (φ ij )= (φ i+1,j + φ i,j+1 ) − φ i0 φ j0 ,
2