Page 277 - Determinants and Their Applications in Mathematical Physics
P. 277

262   6. Applications of Determinants in Mathematical Physics

          Hence,

                                        (n+1)     (n+1)
                                     = A     (r, s)A        (r, s)
                     (τ r,s+1 ) y
                                                  n,n+1;1,n+1
                              (τ rs ) y
                      τ r,s+1   τ rs

                                     = A (n+1) (r, s)A (n) (r, s)
                                                  n1
                                     = A (n+1) (r, s)A (n−1) (r, s +1).
          Replacing s by s − 1,

                                         (n+1)        (n−1)
                       (τ rs ) y  (τ r,s−1 ) y    = A  (r, s − 1)A  (r, s),  (6.6.11)
                              τ r,s−1

                       τ rs
                                         (n+1)
                             (τ r+1,s ) x = A  (r, s).
                                         1n
          Hence,

                                         (n+1)     (n+1)
                                     = A     (r, s)A        (r, s)
                     (τ r+1,s ) x
                                                   1,n+1;n,n+1
                               τ r+1,s

                       (τ rs ) x  τ rs
                                     = A (n+1) (r, s)A (n−1) (r +1,s).  (6.6.12)
          Theorem 6.10 follows from (6.6.9)–(6.6.12).
          Theorem 6.11.

                            τ r+1,s−1  τ r,s−1

                                            (τ r,s−1 ) y
                                                     =0.
                              τ r+1,s  τ rs
                                              (τ rs ) y
                              (τ r+1,s ) x  (τ rs ) x  (τ rs ) xy
          Proof. Denote the determinant by G. Then, Theorem 6.10 can be
          expressed in the form
                                 G 33 G 11 = G 31 G 13 .            (6.6.13)
          Applying the Jacobi identity,

                                             G 11
                               GG 13,13 =       G 13
                                           G 31  G 33

                                        =0.
          But G 13,13  = 0. The theorem follows.
          Theorem 6.12. The Matsukidaira–Satsuma equations with two contin-
          uous independent variables, two discrete independent variables, and three
          dependent variables, namely
          a. (q rs ) y = q rs (u r+1,s − u rs ),
          b.   (u rs ) x  =  (v r+1,s − v rs )q rs  ,
             u rs − u r,s−1  q rs − q r,s−1
          where q rs , u rs , and v rs are functions of x and y, are satisfied by the
          functions
                                    q rs =  τ r+1,s  ,
                                           τ rs
   272   273   274   275   276   277   278   279   280   281   282