Page 275 - Determinants and Their Applications in Mathematical Physics
P. 275

260   6. Applications of Determinants in Mathematical Physics

          Applying the Jacobi identity,

                                             F 11
                                FF 13,13 =      F 13

                                           F 31  F 33
                                        =0.
          But F 13,13  = 0. The theorem follows.
          Theorem 6.9. The Matsukidaira–Satsuma equations with one continuous
          independent variable, one discrete independent variable, and two dependent
          variables, namely
          a. q = q r (u r+1 − u r ),

             r
                u           q
          b.     r    =     r    ,
             u r − u r−1  q r − q r−1
          where q r and u r are functions of x, are satisfied by the functions
                                          τ r+1
                                     q r =  τ r  ,
                                          τ
                                     u r =  τ r r

          for all values of n and all differentiable functions f s (x).
          Proof.

                                             F 31

                                       q = −    ,
                                              τ
                                        r      2
                                              r
                                              F 33
                                 q r − q r−1 = −  τ r−1 τ r  ,
                                            F 11

                                       u =     ,
                                            τ
                                        r    2
                                             r
                                             F 13
                                u r − u r−1 =  τ r−1 τ r  ,
                                              F 31
                                u r+1 − u r = −    .
                                             τ r τ r+1
          Hence,
                                   q       τ r+1
                                         =  τ r  = q r ,
                                    r
                                u r+1 − u r
          which proves (a) and
                               u (q r − q r−1 )  F 11 F 33

                                            =
                                r
                               q (u r − u r−1 )  F 31 F 13

                                r
                                            =1,
          which proves (b).
   270   271   272   273   274   275   276   277   278   279   280