Page 287 - Determinants and Their Applications in Mathematical Physics
P. 287

272   6. Applications of Determinants in Mathematical Physics
          Proof.

                                     1    j  −1/2
                         D (φ i )=  b   e    [(−1) λ i e i + µ i ]
                           j
                                                 j
                           x       2 i   i
                                                            −1/2
          so that every element in row i of W contains the factor e  . Removing
                                                            i
          all these factors from the determinant,
                (e 1 e 2 ...e n ) 1/2 W
                              1                1
                               b                   2
                    λ 1 e 1 + µ 1              2
                              2 1 (−λ 1 e 1 + µ 1 )( b 1 ) (λ 1 e 1 + µ 1 ) ···
                              1                1
                               b                   2
                    λ 2 e 2 + µ 2              2
                              2 2 (−λ 2 e 2 + µ 2 )( b 2 ) (λ 2 e 2 + µ 2 ) ···     (6.7.45)
                              1                1   2
                =
                    λ 3 e 3 + µ 3  b
                                               2
                              2 3 (−λ 3 e 3 + µ 3 )( b 3 ) (λ 3 e 3 + µ 3 ) ···
                    ....................................................

                                                                   n
            Now remove the fractions from the elements of the determinant by mul-
          tiplying column j by 2 j−1 ,1 ≤ j ≤ n, and compensate for the change in
          the value of the determinant by multiplying the left side by
                              2 1+2+3···+(n−1)  =2 n(n−1)/2 .
          The result is
                    2 n(n−1)/2 (e 1 e 2 ··· e n ) 1/2 W = |α ij e i + β ij | n ,  (6.7.46)
          where
                                  α ij =(−b i ) j−1 λ i ,
                                        j−1
                                  β ij = b  µ i .                   (6.7.47)
                                        i
          The determinants |α ij | n , |β ij | n are both Vandermondians. Denote them by
          U n and V n , respectively, and use the notation of Section 4.1.2:

                        U n = |α ij | n =(λ 1 λ 2 ··· λ n ) (−b i )  j−1    ,

                                                         n
                                                          ,         (6.7.48)
                                   =(λ 1 λ 2 ··· λ n )[X n ] x i =−b i
                                V n = |β ij | n .
          The determinant on the right-hand side of (6.7.46) is identical in form
          with the determinant |a ij x i + b ij | n which appears in Section 3.5.3. Hence,
          applying the theorem given there with appropriate changes in the symbols,
                               |α ij e i + β ij | n = U n |E ij | n ,
          where
                                                (n)
                                              K
                                  E ij = δ ij e i +  ij             (6.7.49)
                      (n)                      U n
          and where K    is the hybrid determinant obtained by replacing row i
                      ij
          of U n by row j of V n . Removing common factors from the rows of the
          determinant,
                          (n)              µ j     (n)
                        K    =(λ 1 λ 2 ··· λ n )  H        .
                          ij               λ i  ij  y i =−x i =b i
   282   283   284   285   286   287   288   289   290   291   292