Page 291 - Determinants and Their Applications in Mathematical Physics
P. 291

276   6. Applications of Determinants in Mathematical Physics

           w xxxx =2V n−3,n,n+1 +3V n−3,n−1,n+2 +3V n−2,n−1,n+1 + V n−3,n−2,n+3 ,
              w z = −V n−3,n−1,n + V n−3,n−2,n+1 ,
             w zz =2V n−3,n,n+1 − V n−3,n−1,n+2 − V n−2,n−1,n+1 ,
              w t = −4(V n−2,n−1,n − V n−3,n−1,n+1 + V n−3,n−2,n+2 ),
             w xt =4(V n−3,n,n+1 − V n−3,n−2,n+3 ).                 (6.7.64)
          Each of the sections in the second line of (6.7.60) simplifies as follows:
                w t +4w xxx =12V n−3,n−1,n+1 ,
              (w t +4w xxx ) x = 12(V n−2,n−1,n+1 + V n−3,n,n+1 + V n−3,n−1,n+2 ),
                w xxxx − w zz =4(V n−2,n−1,n+1 + V n−3,n−1,n+2 ),
              (w t +4w xxx ) x − 3(w xxxx − w zz )=12V n−3,n,n+1
                         2
                  w 2  − w =4V n−3,n−1,n V n−3,n−2,n+1 .            (6.7.65)
                    xx   z
          Hence,
                  1
                   F = V n−3,n−2,n−1 V n−3,n,n+1 + V n−3,n−2,n V n−3,n−1,n+1
                 12
                        +V n−3,n−1,n V n−3,n−2,n+1 .                (6.7.66)
          Let

                                                    ,
                                                   T
                               C n+1 = α 1 α 2 ...α n

                                                   ,
                                                  T
                               C n+2 = β 1 β 2 ...β n
          where
                                   α r = D (ψ r )
                                         n
                                         x
                                   β r = D n+1 (ψ r ).
                                         x
          Then
                         V n−3,n−2,n−1 = A n ,
                                              (n)
                           V n−3,n−2,n =   α r A  ,
                                              rn
                                        r
                                                (n)
                         V n−3,n−1,n+1 = −  β s A r,n−1 ,
                                          s
                                              (n)
                         V n−3,n−2,n+1 =   β s A  ,
                                              sn
                                        s
                                                (n)
                           V n−3,n−1,n = −  α r A   ,
                                                r,n−1
                                          r
                                                   (n)
                           V n−3,n,n+1 =      α r β s A   .         (6.7.67)
                                                   rs;n−1,n
                                        r   s
          Hence, applying the Jacobi identity,
                 1                    (n)             (n)      (n)
                                α r β s A    +    α r A     β s A s,n−1
                 12  F = A n          rs;n−1,n        rn
                           r  s                 r         s
   286   287   288   289   290   291   292   293   294   295   296