Page 288 - Determinants and Their Applications in Mathematical Physics
P. 288

6.7 The Korteweg–de Vries Equation  273

          Hence, from (6.7.48),
                              (n)     
  (n)
                            K          H
                                 =
                             ij    µ j   ij
                                        X n
                             U n
                                   λ i
                                             y i =−x i =b i
                                             (b p + b j )
                                           n
                                          p=1
                                 =  µ j
                                      (b i + b j )  n    (b p − b j )
                                   λ i
                                              p=1
                                              p =i
                                 =  (b i + b j )λ i µ i  .          (6.7.50)
                                      2λ j µ j
          Hence,


                            |E ij | n = δ ij e i +  2λ j µ j     .  (6.7.51)

                                           (b i + b j )λ i µ i n

          Multiply row i of this determinant by λ i µ i ,1 ≤ i ≤ n, and divide column
          j by λ j µ j ,1 ≤ j ≤ n. These operations do not affect the diagonal elements
          or the value of the determinant but now

                                                2

                              |E ij | n = δ ij e i +

                                             b i + b j n

                                    = A.                            (6.7.52)
          It follows from (6.7.46) and (6.7.49) that
                           2 n(n−1)/2 (e 1 e 2 ··· e n ) 1/2 W = U n A,  (6.7.53)
          which completes the proof of the theorem since U n is independent of x and
          t.
            It follows that
                                    1            3
                   log A = constant +   (−b i x + b t) + log W.     (6.7.54)
                                    2            i
                                       i
          Hence,

                                   2
                                                2
                             u =2D (log A)=2D (log W)               (6.7.55)
                                   x           x
          so that solutions containing A and W have equally valid claims to be
          determinantal solutions of the KdV equation.

          6.7.5 Direct Verification of the Wronskian Solution
          The substitution
                                          2
                                   u =2D (log w)
                                          x
   283   284   285   286   287   288   289   290   291   292   293