Page 293 - Determinants and Their Applications in Mathematical Physics
P. 293

278   6. Applications of Determinants in Mathematical Physics

            Applying (A),

                                               rr
                      v = D x (log A)= −  λ r e r A ,                (6.8.3)
                                        r

                         D y (log A)=   λ r µ r e r A ,              (6.8.4)
                                               rr
                                      r
                                             2         2
                          D t (log A)=4  λ r (b − b r c r + c )e r A .  (6.8.5)
                                                            rr
                                             r         r
                                       r
          Applying (B),

                      D x (A )=    λ r e r A A ,                     (6.8.6)
                                           rj
                                        ir
                           ij
                                 r

                                               rj
                      D y (A )= −    λ r µ r e r A A ,               (6.8.7)
                                            ir
                           ij
                                   r
                                          2         2
                      D t (A )= −4    λ r (b − b r c r + c )e r A A .  (6.8.8)
                           ij
                                                         ir
                                                            rj
                                          r         r
                                    r
          Applying (C) with
           i. f r = b r ,  g r = c r ;
                   2
                               2
          ii. f r = b ,  g r = −c ;
                   r           r
                              3
                   3
          iii. f r = b ,  g r = c ;
                   r          r
          in turn,

                             λ r e r A rr  +  A rs  =  λ r ,         (6.8.9)
                           r           r,s       r

                    λ r µ r e r A rr  +  (b r − c s )A rs  =  λ r µ r ,  (6.8.10)
                  r             r,s              r
                            2         2             2         2
                         λ r (b − b r c r + c )e r A rr  +  (b − b r c s + c )A rs
                            r         r             r         s
                      r                         r,s
                                                       2         2
                                              =    λ r (b − b r c r + c ). (6.8.11)
                                                       r         r
                                                 r
          Applying (D) with (i)–(iii) in turn,

                         λ r e r A A rj  +  A A rj  =(b i + c j )A ,  (6.8.12)
                                          is
                                                          ij
                              ir
                       r              r,s
                                                   2   2
                λ r µ r e r A A rj  +  (b r − c s )A A rj  =(b − c )A ,  (6.8.13)
                                          is
                       ir
                                                          ij
                                                   i   j
              r                r,s
                           2         2                2         2
                       λ r (b − b r c r + c )e r A A rj  +  (b − b r c s + c )A A rj
                                          ir
                                                                   is
                           r         r                r         s
                     r                            r,s
                                                   3
                                                       3
                                               =(b + c )A .         (6.8.14)
                                                          ij
                                                   i   j
          Eliminating the sum common to (6.8.3) and (6.8.9), the sum common to
          (6.8.4) and (6.8.10) and the sum common to (6.8.5) and (6.8.11), we find
   288   289   290   291   292   293   294   295   296   297   298