Page 85 - Determinants and Their Applications in Mathematical Physics
P. 85

70   4. Particular Determinants

          In detail,
                              −1  •    1    1  ···   1   1

                              −1 −1    •    1  ···   1   1

                              −1 −1 −1     •   ···   1   1

                                                             .
                       B n =
                              .................................
                              −1 −1 −1 −1 ··· −1         •

                             −1 −1 −1 −1 ··· −1         −1

                                                           n
          Lemma 4.13.
                                    B n =(−1) .
                                              n
          Proof. Perform the column operation

                                    C = C 2 − C 1
                                     2
          and then expand the resulting determinant by elements from the new C 2 .
          The result is
                        B n = −B n−1 = B n−2 = ··· =(−1) n−1 B 1 .

          But B 1 = −1. The result follows.
          Lemma 4.14.

             2n
                    j+k+1
          a.   (−1)      =0,
             k=1
             i−1
                    j+k+1
          b.   (−1)      =(−1) δ i,even ,
                               j
             k=1
             2n
                    j+k+1      j+1
          c.   (−1)      =(−1)    δ i,even ,
             k=i
          where the δ functions are defined in Appendix A.1. All three identities follow
          from the elementary identity
                               q

                                 (−1) =(−1) δ q−p,even .
                                     k
                                             p
                              k=p
          Define the function E ij as follows:
                                        i+j+1
                                    (−1)    ,    i < j
                             E ij =  0,           i = j
                                     −(−1)     ,  i>j.
                                         i+j+1
          Lemma 4.15.

             2n
                          j+1
          a.    E jk =(−1)   ,
             k=1
   80   81   82   83   84   85   86   87   88   89   90