Page 87 - Determinants and Their Applications in Mathematical Physics
P. 87

72   4. Particular Determinants

          Lemma 4.16.
                                    E n = δ n,even .
          Proof. Perform the column operation

                                   C = C n + C 1 ,

                                     n
          expand the result by elements from the new C n , and apply Lemma 4.13
                           E n =(−1) n−1 B n−1 − E n−1
                               =1 − E n−1
                               =1 − (1 − E n−2 )
                               = E n−2 = E n−4 = E n−6 , etc.
          Hence, if n is even,
                                    E n = E 2 =1

          and if n is odd,
                                    E n = E 1 =0,
          which proves the result.

          Lemma 4.17. The function E ij defined in Lemma 4.15 is the cofactor of
          the element ε ij in E 2n .
          Proof. Let

                                        2n

                                   λ ij =  ε ik E jk .
                                        k=1
          It is required to prove that λ ij = δ ij .
                                i−1
                                                2n

                           λ ij =  ε ik E jk +0+    ε ik E jk
                                k=1            k=i+1
                                  i−1
                                            2n

                              = −    E jk +     E jk
                                  k=1      k=i+1
                                      i−1

                                  2n

                              =     −     E jk − E ji .
                                      k=1
                                 k=i
          If i<j,
                         λ ij =(−1) j+1   δ i,odd − δ i,even +(−1) i
                            =0.
          If i>j,
                         λ ij =(−1) j+1   δ i,even − δ i,odd − (−1) i
   82   83   84   85   86   87   88   89   90   91   92