Page 86 - Determinants and Their Applications in Mathematical Physics
P. 86

4.3 Skew-Symmetric Determinants  71

             2n
                          j+1
          b.    E jk =(−1)   δ i,odd ,  i ≤ j
             k=i          j+1
                   =(−1)     δ i,even ,  i>j
             i−1
                          j+1
          c.    E jk =(−1)   δ i,even ,  i ≤ j
             k=1
                   =(−1)  j+1 δ i,odd ,  i>j.
          Proof. Referring to Lemma 4.14(b,c),
                              j−1
                     2n                       2n

                        E jk =   E jk + E jj +   E jk
                     k=1      k=1           k=j+1
                                j−1                2n
                                       j+k+1              j+k+1
                            = −   (−1)      +0+       (−1)
                                k=1              k=j+1
                            =(−1) j+1 (δ j,even + δ j,odd )
                            =(−1) j+1 ,
          which proves (a).
            If i ≤ j,

                                          i−1

                           2n        2n

                              E jk =    −     E jk
                                     k=1  k=1
                           k=i
                                             i−1
                                  =(−1) j+1  +    (−1) j+k+1
                                             k=1
                                  =(−1) j+1 (1 − δ j,even )
                                  =(−1) j+1 δ i,odd .
          If i>j,

                                2n       2n
                                               j+k+1
                                  E jk =   (−1)
                               k=i      k=i
                                            j+1
                                      =(−1)    δ i,even ,
          which proves (b).
                              i−1
                                         2n
                                              2n

                                 E jk =     −     E jk .
                              k=1       k=1   k=i
          Part (c) now follows from (a) and (b).
            Let E n be a skew-symmetric determinant defined as follows:
                                     E n = |ε ij | n ,
          where ε ij =1, i<j, and ε ji = −ε ij , which implies ε ii =0.
   81   82   83   84   85   86   87   88   89   90   91