Page 89 - Determinants and Their Applications in Mathematical Physics
P. 89

74    4. Particular Determinants

           The coefficient of a r,2n ,1 ≤ r ≤ (2n − 1), in Pf n is found by putting
         (i s ,j s )=(r, 2n) for any value of s. Choose s = 1. Then, the coefficient is

                                        a          ,
                                  σ r a i 2 j 2 i 3 j 3  ··· a i n j n
         where

                   12    3 4 ... (2n − 1) 2n
         σ r = sgn
                   r 2ni 2 j 2 ...  i n   j n
                                              2n

                   1 234 ... (2n − 1) 2n
            = sgn
                   ri 2 j 2 i 3 ...  j n  2n
                                             2n

                   1 2   3   4 ... (2n − 1)
            = sgn                                                       (4.3.18)
                   ri 2 j 2 i 3 ...
                                            2n−1
                                      j n

                          1234 ... (r − 1)r(r +1) ... (2n − 1)
                  r+1
            =(−1)    sgn                                                ,r > 1
                          i 2 j 2 i 3 j 3 ...  r       ...
                                                                    2n−1
                                                             j n

                          1234 ... (r − 1)(r +1) ... (2n − 1)
                  r+1
            =(−1)    sgn                                               ,r > 1.
                          i 2 j 2 i 3 j 3 ...  ...    ...
                                                                   2n−2
                                                            j n
         From (4.3.18),

                              1   2  3   4  ... (2n − 1)
                     σ 1 = sgn
                              1  i 2  j 2  i 3  ...
                                                          2n−1
                                                   j n

                               2  3   4  ... (2n − 1)
                       = sgn                               .
                              i 2  j 2  i 3  ...
                                                       2n−2
                                                j n
         Hence,
                                  2n−1
                                          r+1       (n)
                            Pf n =    (−1)   a r,2n Pf  ,          (4.3.19)
                                                   r
                                  r=1
         where

                         1234 ··· (r − 1)(r +1) ··· (2n − 2) (2n − 1)
           (n)

         Pf   =    sgn
           r
                        i 2 j 2 i 3 j 3 ···  ···    ···
                                                           i n
                                                                   j n
                                                                         2n−2
                      a          ,    1 <r ≤ 2n − 1,                   (4.3.20)
                ×a i 2 j 2 i 3 j 3  ··· a i n j n
         which is a Pfaffian of order (n − 1) in which no element contains the row
         parameter r or the column parameter 2n. In particular,

              (n)            1   2   3  4   ··· (2n − 3)  (2n − 2)
            Pf 2n−1  =  sgn
                             i 2  j 2  i 3  j 3  ···
                                                                  2n−2
                                                            j n
                                                   i n
                   =Pf n−1 .                                       (4.3.21)
         Thus, a Pfaffian of order n can be expressed as a linear combination of
         (2n − 1) Pfaffians of order (n − 1).
   84   85   86   87   88   89   90   91   92   93   94