Page 13 - Digital Analysis of Remotely Sensed Imagery
P. 13

xii   Co n t e n t s

                             7.3.3  Agglomerative Hierarchical
                                           Clustering  . . . . . . . . . . . . . . . . . . . . . . .   264
                               7.3.4  Histogram-Based Clustering  . . . . . . .   266
                      7.4  Supervised Classification . . . . . . . . . . . . . . . . . . .   267

                               7.4.1  Procedure . . . . . . . . . . . . . . . . . . . . . . . .   267
                               7.4.2  Selection of Training Samples . . . . . . .   270
                             7.4.3  Assessment of Training
                                           Sample Quality . . . . . . . . . . . . . . . . . . .   271

                       7.5  Per-Pixel Image Classifiers . . . . . . . . . . . . . . . . . .   271

                             7.5.1  Parallelepiped Classifier . . . . . . . . . . .   272
                             7.5.2  Minimum-Distance-to-Mean Classifier . . .   274

                             7.5.3  Maximum Likelihood Classifier . . . . .   276
                             7.5.4  Which Classifier to Use? . . . . . . . . . . .   281

                      7.6  Unsupervised and Supervised Classification . . .   283


                      7.7  Fuzzy Image Classification  . . . . . . . . . . . . . . . . .   284
                               7.7.1  Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . .   285
                               7.7.2  Fuzziness in Image Classification  . . .   287

                               7.7.3  Implementation and Accuracy . . . . . .   289

                       7.8  Subpixel Image Classification . . . . . . . . . . . . . . .   291
                               7.8.1  Mathematical Underpinning  . . . . . . .   291
                               7.8.2  Factors Affecting Performance . . . . . .   293
                               7.8.3  Implementation Environments. . . . . .   294
                               7.8.4  Results Validation . . . . . . . . . . . . . . . . .   296
                      7.9  Postclassification Filtering . . . . . . . . . . . . . . . . . .   297

                     7.10  Presentation of Classification Results . . . . . . . . .   300

                     References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   302
                  8  Neural Network Image Analysis . . . . . . . . . . . . . . . . .   305
                       8.1  Fundamentals of Neural Networks . . . . . . . . . .   306
                               8.1.1  Human Neurons . . . . . . . . . . . . . . . . . .   306

                             8.1.2  Artificial Neurons . . . . . . . . . . . . . . . . .   306
                       8.2  Neural Network Architecture . . . . . . . . . . . . . . .   307
                               8.2.1  Feed-Forward Model . . . . . . . . . . . . . .   309
                               8.2.2  Backpropagation Networks  . . . . . . . .   311
                               8.2.3  Self-Organizing Topological Map  . . .   313
                               8.2.4  ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   314
                               8.2.5  Parallel Consensual Network . . . . . . .   316
                               8.2.6  Binary Diamond Network . . . . . . . . . .   317
                               8.2.7  Structured Neural Network . . . . . . . .   317
                               8.2.8  Alternative Models . . . . . . . . . . . . . . . .   319
                       8.3  Network Learning . . . . . . . . . . . . . . . . . . . . . . . . .   321
                               8.3.1  Learning Paradigm . . . . . . . . . . . . . . . .   321
                               8.3.2  Learning Rate . . . . . . . . . . . . . . . . . . . .   322
                               8.3.3  Learning Algorithms . . . . . . . . . . . . . .   323
                               8.3.4  Transfer Functions . . . . . . . . . . . . . . . .   324
   8   9   10   11   12   13   14   15   16   17   18