Page 106 - Distributed model predictive control for plant-wide systems
P. 106

80                            Distributed Model Predictive Control for Plant-Wide Systems


           with matrices
                                      [         ]
                                       A 11   0
                                  A =
                                        0    A
                                              22
                                      ⎡2.74  −1.27  0.97   0 ⎤
                                      ⎢                       ⎥
                                        2      0      0    0
                                 A 11  =  ⎢                   ⎥
                                      ⎢ 0     0.5     0    0 ⎥
                                      ⎢                       ⎥
                                      ⎣ 0      0      0   0.37⎦
                                      ⎡1.68  −0.82    0     0 ⎤
                                      ⎢  1     0      0     0  ⎥
                                 A  =  ⎢                       ⎥
                                  22
                                      ⎢ 0      0    1.57  −0.67⎥
                                      ⎢                        ⎥
                                      ⎣ 0      0      1     0 ⎦
                                      [        ]
                                       B 11   0
                                   B =
                                        0    B 22

                                      ⎡0.25⎤      ⎡0.25⎤
                                        0           0
                                      ⎢    ⎥      ⎢   ⎥
                                 B 11  =  ⎢  ⎥  , B 22  =  ⎢  ⎥
                                      ⎢ 0 ⎥       ⎢ 0.5 ⎥
                                      ⎢    ⎥      ⎢   ⎥
                                      ⎣ 0.5 ⎦     ⎣ 0 ⎦
                                      [         ]
                                       C 11  C 12
                                  C =
                                       C     C
                                         21   22
                                      [                   ]
                                 C 11  = −0.1  0.03  0.12  0
                                        [                ]
                                 C 12  =    0.07  0.07  0  0
                                                                                 (5.42)
                                        [             ]
                                 C  =    0  0  0   2.25
                                  21
                                      [                  ]
                                 C  = 0   0   0.29  −0.20
                                  22
             Decompose S into two SISO subsystems, S and S . The corresponding state-space models
                                                1
                                                     2
           of S and S have the form (5.1) and are expressed as (5.43) and (5.44), respectively, where
                     2
               1
           the constant parameter    is used to study the interactions between S and S :
                                                                 1
                                                                       2
           Subsystem S :
                      1
                         {
                           x (k + 1) = A x (k)+ A x (k)+ B u (k)+ B u (k)
                                                         11 1
                                                12 2
                                                                  12 2
                                      11 1
                            1
                                                                                 (5.43)
                           y (k)= C x (k)+ C x (k)
                            1
                                   11 1
                                            12 2
           Subsystem S :
                      2
                         {
                           x (k + 1) = A x (k)+ A x (k)+ B u (k)+ B u (k)
                            2         22 2      21 1     22 1     21 1
                                                                                 (5.44)
                           y (k)= C x (k)+ C x (k)
                            2      22 2     21 1
   101   102   103   104   105   106   107   108   109   110   111