Page 175 - Distributed model predictive control for plant-wide systems
P. 175

Networked Distributed Predictive Control with Information Structure Constraints  149


                                       (l)
                                    ∆U 1,M (k)             (l)
                                                         ∆U m,M (k)
                                      (l)                   (l)
                                    ∆U 2,M (k)  Communicator  ∆U m–1,M (k)
                 (l)            (l)                              (l)             (l)
               ∆U j,M (k)     ∆U j,M (k)                       ∆U j,M (k)     ∆U j,M (k)
              j∈¥ 1 ,  j≠1   j∈¥ 2 ,  j≠2                      j∈¥ m–1 ,  j≠m–1  j∈¥ m ,  j≠m

                    MPC1           MPC2                   MPCm-1          MPCm

                u 1 (k)  y 1 (k)  u 2 (k)  y 2 (k)    u m-1 (k)  y m–1 (k) u m (k)  y m (k)


                                                         Subprocess
                 Subprocess 1    Subprocess 2                           Subprocess m
                                                            m–1

                               Figure 7.8 Diagram of networked MPC algorithm


                   control decision, and transmits it to its neighbors by communicator, and lets the iter-
                   ative index l = 0:
                                          (l)
                                                   ̂
                                       ΔU   (k)=ΔU    (k)(i = 1, … , m)
                                          i,M       i,M
             Step 2. Subsystem optimization: Each subsystem resolves its local optimization problem
                   described in
                                                    |
                                           min J (k)  |  (l)
                                                 i
                                          ΔU i,M (k)  | ΔU j,M (k)(j∈ℕ i , j≠i)
                                                    |
                                                          (l+1)
                   simultaneously to derive its control decision ΔU  (k).
                                                          i,M
             Step 3. Checking and updating: Each subsystem checks if its terminal iteration condition is
                   satisfied, that is, for the given error accuracy    ∈ ℝ, (i = 1, … , m), if there exist
                                                        i
                                    ‖  (l+1)      (l)  ‖
                                    ‖ΔU i,M  (k)−ΔU i,M (k)‖ ≤    , (i = 1, … , m)
                                                           i
                                    ‖                 ‖
                                                               ∗
                   If all the terminal conditions are satisfied at iteration l , then to end the iteration, set
                                                                             ∗
                   the local optimal control decision for each subsystem ΔU ∗  (k)=ΔU (l ) (k), and go
                                                                  i,M       i,M
                   to Step 4; otherwise, let l = l + 1, and each subsystem communicate to exchange the
                                    (l)
                   new information ΔU  (k) with its neighbors, and go to Step 2.
                                    i,M
             Step 4. Assignment and implementation: Compute the instant control law
                                        [              ]   ∗
                                  ∗
                                Δu (k)= I         ···     ΔU  (k), (i = 1, … , m)
                                  i      n ui              i,M
                                           ∗
                             ∗
                                     ∗
                   and apply u (k)=Δu (k)+ u (k − 1) to each subsystem.
                             i       i     i
             Step 5. Reassigning the initial estimate: Set the initial estimate of the local optimal control
                   decision for the next sampling time
                                        ̂
                                      ΔU   (k + 1)=ΔU ∗  (k)(i = 1, … , m)
                                         i,M          i,M
             Step 6. Receding horizon: Move horizon to the next sampling time, that is, k + 1 → k,goto
                   Step 1, and repeat the above steps.
   170   171   172   173   174   175   176   177   178   179   180