Page 189 - Distributed model predictive control for plant-wide systems
P. 189

Networked Distributed Predictive Control with Information Structure Constraints  163


                                       T = diag{T , … , T }
                                                 1     n
                                          = diag{   K , … ,    K }                (E.10)
                                                 1
                                                         n
                                                           n
                                                   1
               By definitions (E.5) and (E.10), and substituting (E.3) and (E.4) into (E.9), the completed
             stacked open-loop optimal sequence can be expressed as
                                                 d
                  (k, M|k)=        (k − 1, M|k − 1)+   {Y (k + 1, P|k)
                           ′ ̂
                                ′
                          − S[B       (k − 1, M|k − 1)+ Âx(k|k)
                          + A    (k, P|k − 1)+ B    (k − 1, M|k − 1)] − TC    (k, P|k − 1)}  (E.11)
                                            ̃
                               ̂
                            ̃
                                                                    ̂
                                                                 ̃
               Define
                                          =−  SA
                                                ̃
                                          =−  (SA   + TC  )
                                                      ̃
                                            ′
                                                      ′
                                          =       −   S(B      + B  )             (E.12)
                                                          ̃
               Then the completed stacked open-loop optimal sequence (D.11) has the form
                                (k, M|k)=     (k − 1, M|k − 1)+   ̂x(k|k)
                                                            d
                                             ̂
                                         +     (k, P|k − 1)+   Y (k + 1, P|k)     (E.13)
               Therefore, the complete feedback control law computed by all controllers can be
             expressed as
                                           u(k)=   U(k, M|k)                      (E.14)

               Merging the process model (5.3), the feedback control law (E.14), the global prediction
             equation given by (E.8) and the controller equation given by (E.13), the closed-loop state-space
             representation for the distributed case is derived

              ⎧x(k)= Ax(k − 1)+ B    (k − 1, M|k − 1)
              ⎪
              ⎪ ̂                         ̃  ̂
                  (k, P|k − 1)= LS[Âx(k − 1)+ A    (k − 1, P|k − 2)
              ⎪
              ⎪                                  ̃
                             + B  (k − 1, M|k − 1)+ B  v(k − 2, M|k − 2)]
              ⎪
              ⎪                                                     d
                  (k, M|k)=   ̂x(k)+     (k, P|k − 1)+     (k − 1, M|k − 1)+   Y (k + 1, P|k)
                                   ̂
              ⎪
              ⎪
                        =   [Ax(k − 1)+ B    (k − 1, M|k − 1)]                    (E.15)
              ⎨
              ⎪
                                          ̃
                          +  LS[Âx(k − 1)+ A    (k − 1, P|k − 2)
                                             ̂
              ⎪
              ⎪
                                             ̃
              ⎪           +B  (k − 1, M|k − 1)+ B    (k − 2, M|k − 2)]
              ⎪
                                                d
              ⎪           +    (k − 1, M|k − 1)+   Y (k + 1, P|k)
              ⎪
              ⎪ y(k)= Cx(k)
              ⎩
   184   185   186   187   188   189   190   191   192   193   194