Page 190 - Distributed model predictive control for plant-wide systems
P. 190

164                           Distributed Model Predictive Control for Plant-Wide Systems


           where ̂x(k|k) in Equations (E.8) and (E.13) has been substituted with x(k) due to the assumption
           of fully accessible state. Defining the extended state
                           [  T                                            ] T
                                                            ̂ T
                                   ̂ T
                                                 ̂ T
                   X (k)= x (k)      (k, P|k − 1)     (k, M|k)     (k − 1, M|k − 1) ,
                     N
           the closed-loop state-space representation has the form
                             {
                                                        d
                               X (k) = A X (k − 1)+ B Y (k + 1, p|k)
                                 N      N  N         N
                                                                                (E.16)
                               y(k)= C X (k)
                                         N
                                      N
           where
                             A                        B                
                       ⎡                                                 ⎤
                       ⎢               LSA                        LSB    ⎥
                                                                     ̃
                            LS A                     LS B
                                         ̃
                  A =  ⎢                                                 ⎥      (E.17)
                    N
                                          ̃
                       ⎢  A +   LS A    LSA      B   +   LS B +       LSB  ⎥
                                                                      ̃
                       ⎢                             I                   ⎥
                       ⎣                              Mn u               ⎦
           Thus, Theorem 7.2 is obtained.
           Appendix F. Derivation of the QP problem (7.52)
           At the sampling time instant k, the output prediction model for each subsystem can be derived
           from (7.48)
                                                  ∑
                                  Y (k)= G ̂ x (k)+  H ΔU    (k)                  (F.1)
                                  ̂
                                   i,P     i i         ij  j,M
                                                  j∈ℕ i
           where
                                      [  T               T       ] T
                              Y (k)= ̂ y (k + 1 |k)  · · ·  ̂ y (k + P|k)
                               ̂
                                i,P     i                i
                                        [     T           P T  ]
                                   G = (C A )    ···  (C A )
                                           i
                                                        i
                                             i
                                     i
                                                          i
                                         C B      ···       
                                      ⎡                        ⎤
                                          i ij
                                      ⎢   ⋮       ⋱       ⋮    ⎥
                                      ⎢   M−1                  ⎥
                                 H = C A     B    ···    C B
                                  ij  ⎢ i  i  ij          i ij  ⎥
                                      ⎢   ⋮       ⋮       ⋮    ⎥
                                      ⎢ C A P−1 B  ···  C A P−M B  ⎥
                                      ⎣  i  i  ij       i  i  ij⎦
           The local performance index for each subsystem in (7.51) can be rewritten as
                         [                  ] T  [                 ]
                   J (k)= R   (k) − H ΔU  (k)  Q R   (k) − H ΔU  (k)
                    i       i,P     ii  i,M     i  i,P     ii  i,M
                         +ΔU  T  (k)R ΔU  (k)
                              i,M   i  i,M
                                 {
                             ∑     [                 ] T  [                 ]
                         +         R   (k) − H ΔU  (k)  Q R   (k) − H ΔU  (k)
                                     j,P     ji  i,M     j  j,P     ji  i,M
                           j∈P i , j≠i
                                            }
                          +ΔU T  (k) R ΔU  (k)
                              j,M   j   j,M
   185   186   187   188   189   190   191   192   193   194   195