Page 191 - Distributed model predictive control for plant-wide systems
P. 191

Networked Distributed Predictive Control with Information Structure Constraints  165

                                   (               )
                                    ∑
                                         T
                         =ΔU  T  (k)   H Q H + R     ΔU   (k)
                              i,M        ji  j  ji  i  i,M
                                    j∈P i
                              (              ) T
                               ∑    T
                           − 2     H Q R   (k)  ΔU  (k)+ constant                  (F.2)
                                    ji  j  j,P    i,M
                               j∈P i
             where
                                                       ∑
                              R (k)= R (k)− G ̂ x (k)−      H ΔU h,M (k)
                                                             jh
                               j,P
                                               j j
                                       j,P
                                                      h∈P j ,h≠i
                                         [  T             T      ] T
                                  R (k)= r (k + 1)  ···  r (k + P)
                                   i,P
                                                          i
                                           i
                                       Q = block-diag(Q , … , Q )
                                        i             i     i
                                                    ⏟⏞⏞⏟⏞⏞⏟
                                                        P
                                       R = block-diag(R , … , R ).
                                                      i
                                        i
                                                            i
                                                    ⏟⏞⏞⏟⏞⏞⏟
                                                        M
               By removing the constant terms, the local optimization problem (7.51) can be written in the
             following quadratic form:
                                            1    T               T
                          min J (k) ⇐⇒ min    ΔU   (k)Π ΔU i,M (k)+ f (k)ΔU i,M (k)  (F.3)
                               i
                                                      i
                        ΔU i,M (k)    ΔU i,M (k) 2  i,M          i
             where
                                           ∑    T
                                          =   H Q H + R > 0
                                        i       ji  j  ji  i
                                           j∈ℕ i
                                               ∑    T
                                        f (k)=−   H Q R (k)
                                        i           ji  j  j,P
                                               j∈ℕ i
             The inequality constraints in (7.51) can be converted into
                                             ΔU i,M (k) ≤ b (k)                    (F.4)
                                            i
                                                       i
             where
                                              ⎡            U i          ⎤
                                              ⎢                         ⎥
                                  T i         ⎢           −U            ⎥
                               ⎡     ⎤
                               ⎢     ⎥                       i
                                              ⎢                         ⎥
                                 −T i         ⎢           ΔU            ⎥
                               ⎢     ⎥
                               ⎢     ⎥                       i
                                              ⎢                         ⎥
                                 I            ⎢          −ΔU            ⎥
                               ⎢     ⎥
                              =  ⎢  Mn ui ⎥  , b (k)=  ⎢     i          ⎥
                                         i
                            i
                                −I            ⎢Y − G ̂ x (k) −  H ΔU  (k)⎥
                               ⎢     ⎥                     ∑
                               ⎢  Mn ui ⎥       i    i i        ij  j,M
                                              ⎢                         ⎥
                                  H ii        ⎢             j≠i         ⎥
                               ⎢     ⎥                     j∈ℕ i
                               ⎢     ⎥
                                              ⎢        ∑                ⎥
                                 −H           ⎢ G ̂ x (k)+  H ΔU j,M  (k)− Y ⎥
                               ⎢     ⎥
                                                i i
                                                            ij
                               ⎣    ii ⎦                                i
                                              ⎢        j∈ℕ i            ⎥
                                              ⎣         j≠i             ⎦
   186   187   188   189   190   191   192   193   194   195   196