Page 204 - Distributed model predictive control for plant-wide systems
P. 204

178                           Distributed Model Predictive Control for Plant-Wide Systems


             Proof. Since Problem 8.1 has a solution at time k − 1, by construction (8.6), it has
                                                ‖ p              ‖
                             ‖ ̂ x (k + N − 1) |k ‖
                             ‖ i           ‖P j  = ‖x (k + N − 1) |k − 1‖
                                                ‖ i
                                                                 ‖P i
                                                    
                                              ≤ √
                                                2 m
             In addition, since
                                                      ∑
                                     p                       p
                      ̂ x (k + N|k)= A x (k + N − 1|k − 1)+  A x (k + N − 1|k − 1)
                      i
                                  di i
                                                           ij j
                                                      j∈P +i
                                                   ∑
                               = A ̂ x (k + N − 1|k)+  A ̂ x (k + N − 1|k)
                                                       ij j
                                  di i
                                                  j∈P +i
             It has
                                    ‖                                    ‖
                                    ‖                   ∑                ‖
                                    ‖
                     ‖ ̂ x (k + N|k) ‖  = A ̂ x (k + N − 1|k) +  A ̂ x (k + N − 1|k) ‖
                     ‖ i        ‖P i  ‖ di i                ij j         ‖
                                    ‖                                    ‖
                                                       j∈P +i
                                    ‖                                    ‖P i
                                                    T
                                    T
                                            T
                                                            ̂
             Consider Assumption 8.2, A PA + A PA + A PA < Q∕2
                                    o   o   o   d   d   o
             Thus if, then
                        ‖ ̂ x (k + N|k) ‖  ‖         ‖
                                       ‖ i
                        ‖ i       ‖P i  ≤ ̂ x (k + N − 1|k) ̂
                                                     ‖Q∕2
                                           √
                                                 −1 T ̂
                                              ̂
                                     ≤       (Q P ) Q P −1‖ ̂ x (k + N − 1|k) ‖
                                        max    i i    i i ‖ i          ‖P i
                                                 
                                     ≤ (1 −   ) √
                                             2 m
             This completes the proof.
           Lemma 8.3 Suppose Assumptions 8.1–8.3 hold and x(k )∈ X, ∀k ≥ 0, if Problem 8.1 has a
                                                        0
           solution at every update time l, l = 1, 2, … ,k − 1, then
                                 ‖ f                  ‖         
                                              i
                                   i
                                 ‖x (k + s|k) − ̂ x (k + s|k)‖ ≤ √               (8.19)
                                                           2 m
                                 ‖                    ‖P i
           for all i ∈ P and all s = 1, 2, … , N, provided that (8.18) and the following parametric condi-
           tion hold:
                                          √     N−2
                                            m 2  ∑
                                                      ≤ 1                        (8.20)
                                                    l
                                              min (P)  l=0
                                                                 f
           where    is as defined in (8.16). Furthermore, the feasible control u (k + s|k) and the feasible
                  l
                                                                 i
                 f
           state x (k + s|k) satisfy constraints (8.10) and (8.11).
                 i
   199   200   201   202   203   204   205   206   207   208   209