Page 206 - Distributed model predictive control for plant-wide systems
P. 206

180                           Distributed Model Predictive Control for Plant-Wide Systems


             Subtracting (8.22) from (8.21), and from the definition of (8.16), we obtain the discrepancy
           between the feasible state sequence and the presumed state sequence as
                      ‖ f                   ‖
                                    j,i
                      ‖x (k + s|k) − ̂ x (k + s|k)‖
                        j,i
                      ‖                     ‖P j
                              s
                            ‖ ∑                                         ‖
                            ‖     s−l  (  p                             ) ‖
                                                          i
                          = ‖   A ii  A ij  x (k + l − 1|k − 1) − ̂ x (k + l − 1|k − 1) ‖
                                        i
                            ‖                                           ‖
                            ‖ l=1                                       ‖ P i
                             s
                            ∑         (  p                              )
                               ‖  s−l                                   ‖
                          ≤    ‖A ii  A ij  x (k + l − 1|k − 1) − ̂ x (k + l − 1|k − 1) ‖
                                                          i
                                        i
                               ‖                                        ‖P i
                             l=1
                             s
                            ∑     ‖ p
                          ≤                                         ‖            (8.23)
                                s−l  ‖x (k + l − 1|k − 1) − ̂ x (k + l − 1|k − 1)‖
                                                      i
                                    ̃
                                  ‖ i
                                                                    ‖2
                             l=1
             Let the subsystems, which respectively maximize the following functions, as S
                                                                            g
                          s
                         ∑
                               ‖ p                              ‖
                               s−l ‖x (k − 1 + l|k − 1) − ̂ x (k − 1 + l|k − 1)‖ , i ∈ P
                                                   i
                               ‖ i
                         l=1                                    ‖2
             Then, the following equation can be deduced from (8.23):
                      ‖ f                  ‖
                      ‖x (k + s|k) − ̂ x (k + s|k)‖
                                    j
                      ‖ j                  ‖P i
                                  s
                             √   ∑     ‖ p
                                                                        ‖
                           ≤   m 1     s−l ‖x (k + l − 1|k − 1) − ̂ x (k + l − 1|k − 1)‖
                                         g
                                                           g
                                       ‖                                ‖2
                                 l=1
                    p
             Since x (l|k − 1) satisfy constraints (8.10) for all times l = 1, 2, … , k − 1, the following
                    i
           equation can be deduced:
                                  ‖ f                 ‖
                                               i
                                  ‖x (k + s|k) − ̂ x (k + s|k)‖
                                    i
                                  ‖                   ‖P i
                                        (1 −   )(1 −   )      (1 −   )  
                                      ≤              +
                                             √            √
                                            2 m          2 m
                                             
                                      = √                                        (8.24)
                                        2 m
           Thus, (8.19) holds for all s = 1, 2, … , N − 1.
             When l = N, we can get
                                                      ∑
                          f
                                        f
                         x (k + N|k)= A x (k + N − 1|k)+  A ̂ x (k + N − 1|k)    (8.25)
                          i           d,i i                ij j
                                                      j∈P +i
                                                      ∑
                         ̂ x (k + N|k)= A ̂ x (k + N − 1|k)+  A ̂ x (k + N − 1|k)  (8.26)
                          i           d,i i                ij j
                                                      j∈P +i
             From the subtraction of the two equations, then, the discrepancy between the feasible state
            f
           x (k + N|k) and the presumed state ̂ x (k + N|k) is
                                         j,i
            j,i
                      f
                                                 f
                     x (k + N|k)− ̂ x (k + N|k)= A (x (k + N − 1|k)− ̂ x (k + N − 1|k))  (8.27)
                      i           i           d,i  i            i
           This completes the proof of (8.19).
   201   202   203   204   205   206   207   208   209   210   211