Page 205 - Distributed model predictive control for plant-wide systems
P. 205

Local Cost Optimization Based Distributed Predictive Control with Constraints  179


               Proof. We will prove (8.19) first. Since a solution exists at update time 1, 2, … , k − 1,
             according to (8.4), (8.5), and (8.17), for any s = 1, 2, … , N − 1, the feasible state is given by
                           f
                                      l
                                        f
                          x (k + l|k)= A x (k|k)
                           i          ii i
                                       l
                                      ∑
                                                f
                                     +   A l−h B u (k + l|k)
                                           ii  ii i
                                      h=1
                                           l
                                       ∑ ∑     l−h
                                     +       A   A ̂ x (k + h − 1|k)
                                               ii  ij j
                                      j∈P +i h=1
                                       (
                                          l
                                   = A l  A x (k − 1|k − 1)
                                      ii  ii i
                                                                         )
                                                        ∑
                                     + B u (k − 1|k − 1) +  A x (k − 1|k − 1)
                                        ii i
                                                            ij j
                                                       j∈P +i
                                       l
                                      ∑
                                     +   A l−h B ̂ u (k + l|k)
                                           ii  ii i
                                      h=1
                                           l
                                       ∑ ∑     l−h  P
                                     +       A   A x (k + h − 1|k − 1)            (8.21)
                                               ii  ij j
                                      j∈P +i h=1
             and
                                      l
                          ̂ x(k + l|k)= A x (k|k − 1)
                                      ii i
                                       l
                                      ∑   l−h
                                    +    A   B u (k + l|k − 1)
                                          ii  ii i
                                      h=1
                                           l
                                       ∑ ∑    l−h
                                    +        A   A ̂ x (k + h − 1|k − 1)
                                              ii  ij j
                                      j∈P +i h=1
                                       (
                                          l
                                  = A l  A x (k − 1|k − 1)
                                      ii  ii i
                                                                        )
                                                       ∑
                                    + B u (k − 1|k − 1) +  A ̂ x (k − 1|k − 1)
                                                            ij j
                                       ii i
                                                       j∈P +i
                                       l
                                      ∑   l−h
                                    +    A   B ̂ u (k + l|k)
                                          ii  ii i
                                      h=1
                                           l
                                       ∑ ∑    l−h
                                    +        A   A ̂ x (k + h − 1|k − 1)          (8.22)
                                              ii  ij j
                                      j∈P +i h=1
   200   201   202   203   204   205   206   207   208   209   210