Page 57 - Distributed model predictive control for plant-wide systems
P. 57

Model Predictive Control                                                31


               Then, the optimization problem of MPC in each control period becomes
                           min J(k)= ||THx(k|k)+ TFu(k − 1|k − 1)+ TVW(k|k)
                           ΔU(k|k)
                                                         2            2
                                     +TGΔU(k|k)− Y (k|k)|| + ||ΔU(k|k)||          (2.26)
                                                    r    Q            R
             which is a standard quadratic programming problem. Let
                          Z(k)= Hx(k|k)+ TFu(k − 1|k − 1)+ TVW(k|k)− Y (k|k)      (2.27)
                                                                     r
               The explicit solution of (2.26) can be deduced as
                                                              T
                                                        −1
                                              T
                                ΔU(k|k)=((TG) QTG + R) (TG) QZ(k)                 (2.28)
               Thus, in every control period, the manipulated variable should be
                                         T
                                                        T
                                                  −1
                             u(k)= D((TG) QTG + R) (TG) QZ(k)+ u(k − 1)           (2.29)
                      [        ]
             where D = I 0 ··· 0 .
             2.3.5  State Space MPC with Constraint
             In the real application of MPC, the constraints on actuator slew rates, actuator ranges, and
             constraints on the controlled variables usually exist. We use the following equations to express
             those constraints.

             1. Output constraint: y min  ≤ y(k + l|k) ≤ y max .
               At each optimization cycle, the output prediction can be calculated by (2.24). Hence, we
               can let the optimization problem satisfy the following constraint:
                     Y   ≤ T(Hx(k|k)+ GΔU(k|k)+ Fu(k − 1|k − 1)+ VW(k|k)) ≤ Y     (2.30)
                      min                                                  max
               or
                      Y min  ≤ T(HÂ x(k|k − 1)+ Bu(k − 1)+ Ed(k − 1)+ L(̂ y(k)− ̂ y(k|k − 1))
                            + GΔU(k|k)+ Fu(k − 1|k − 1)+ VW(k|k)) ≤ Y max         (2.31)

               where
                                           [                   ] T
                                     Y   = y T    y T  ···  y T
                                      min    min   min       min
                                           [  T    T          T  ] T
                                     Y max  = y max  y max  ···  y max
             2. Input increment constraint: Δu  ≤ u(k + l|k) − u(k + l − 1|k) ≤ u  .
                                          min                         max
               We can let the optimization problem satisfy the following constraint:
                                        ΔU    ≤ ΔU(k|k) ≤ ΔU                      (2.32)
                                           min              max
               where
                                         [   T      T           T  ] T
                                  ΔU min  = Δu min  Δu min  ···  Δu min
                                         [   T      T            T  ] T
                                  ΔU    = Δu      Δu     ···  Δu
                                    max      max    max          max
   52   53   54   55   56   57   58   59   60   61   62