Page 314 - Dynamics and Control of Nuclear Reactors
P. 314

316    APPENDIX F State variable models and transient analysis




                         F.3  Determine the transfer function vector for a system with an additional
                              delay terms.
                                                     dx
                                                       ¼ Ax + d + bf
                                                     dt

                                                                   ð
                                          x 1    12       x 1 t  1ð  Þ +2x 2 t  3Þ  1
                                      x ¼   A ¼       d ¼                b ¼
                                          x 2    3  4        4x 1 t  2ð  Þ   3
                         F.4  Consider the second order system with two inputs.
                                                  dx 1
                                                     ¼ x 1 +2x 2 + f 1 +2f 2
                                                   dt
                                                    dx 2
                                                      ¼ 3x 1  4x 2 + f 2
                                                    dt
                         (a)  Compute the transfer function matrix

                                                        G 11 sðÞ G 12 sðÞ
                                                  GsðÞ ¼
                                                        G 21 sðÞ G 22 sðÞ
                         where
                                                     G ij sðÞ ¼ X i sðÞ=f j sðÞ


                         (b)  Compute the response of x1 and x2 due to an impulse in f1 for the above sys-
                              tem. Assume that f2¼0.

                         F.5  Verify Eq. (F.37).

                                       At
                         F.6  Calculate e for the following matrix. Truncate the solution after a few terms.

                                                           12
                                                      A ¼
                                                          3  4
                         F.7  What is the maximum number of sensitivities to matrix elements for a
                              dynamic system with a (n x n) coefficient matrix? Explain.

                         F.8  Consider the following first-order differential equation.
                                                      dx
                                                        ¼ 3x +5
                                                       dt

                         a.   Calculate the solution at t¼1witha Δt¼0.5 using the Euler method and the
                              Runge-Kutta2 method.
                         b.   Repeat the calculations for a Δt¼0.2.
                         c.   Discuss your results.

                         F.9  Calculate the eigenvalues of the matrix used in Exercise F.6.
   309   310   311   312   313   314   315   316   317   318   319