Page 151 - Dynamics of Mechanical Systems
P. 151

0593_C05_fm  Page 132  Monday, May 6, 2002  2:15 PM





                       132                                                 Dynamics of Mechanical Systems



                                               n
                                                y
                                                            n  r       n
                                                  n   θ                 z
                                                    Q

                                                r
                                                 θ             φ
                                            O                             P         n
                                                            x                         x





                       FIGURE 5.3.4
                       Geometrical parameters and unit vectors of the piston, connecting rod, and crank arm system.

                       where ωω ωω  and αα αα  are the angular velocity and angular acceleration, respectively, of the
                              QP
                                      QP
                       connecting rod QP. Because QP has planar motion, we see from Figure 5.3.4 that ωω ωω  and
                                                                                                QP
                       αα α α  may be expressed as:
                        QP
                                                                        ˙˙
                                                 ωω  =−φn    and  αα  =−φn                     (5.3.17)
                                                        ˙
                                                   QP     z        QP      z
                       where n  (= n  × n ) is perpendicular to the plane of motion. Also, the position vector QP
                                   x
                                       y
                              z
                       may be expressed as:
                                                    QP = lcosφ n − lsinφ n y                   (5.3.18)
                                                               x
                        By carrying out the indicated operations of Eqs. (5.3.15) and (5.3.16) and by using Eqs.
                       (5.3.13) and (5.3.14), v  and a  become:
                                          P
                                                P
                                         v =− (  rΩsinθ − φ ˙  sin  n ) φ  x ( rΩcosθ − φ ˙  cos  n )  y  (5.3.19)
                                                                 +
                                                       l
                                                                           l
                                          P
                       and
                                             a =− (  rΩ cosθ − φ sinφ − φ 2 ˙  n ) φ
                                                             ˙˙
                                                     2
                                                                    l
                                                            l
                                              P                        cos   x                 (5.3.20)
                                                    r (
                                                               ˙˙
                                                 +− Ω sinθ  − φ cosφ + φ 2 ˙  sin  n ) φ
                                                       2
                                                                      l
                                                             l
                                                                               y
                        Observe from Figure 5.3.4 that P moves in translation in the n  direction. Therefore, the
                                                                               x
                       velocity and acceleration of P may be expressed simply as:
                                                   v = ˙ x n  and  a = ˙˙ n                    (5.3.21)
                                                                      x
                                                     P    x        P    x
                       where x is the distance OP. By comparing Eqs. (5.3.19) and (5.3.20) with (5.3.21), we have:
                                                     ˙ x =− rΩ sin − φ ˙  sinφ                 (5.3.22)
                                                               θ
                                                                 l
   146   147   148   149   150   151   152   153   154   155   156