Page 173 - Dynamics of Mechanical Systems
P. 173

0593_C05_fm  Page 154  Monday, May 6, 2002  2:15 PM





                       154                                                 Dynamics of Mechanical Systems


                                                              z (
                                                v =− rω n + ω n ×  n r  y)  =−2 rω n           (5.8.31)
                                                 P
                                                        x                   x
                                                                 z [
                                                                       z (
                                                    z (
                                      a =−  rα n + α n × −  n r  y) + ω n × ω n × −  n r  y)] =  rω  2 n  (5.8.32)
                                       O
                                               x                                     y
                                                                     z [
                                                                          z (
                                                         z (
                                           a =−  rα n + α n ×  n r  y) + ω n × ω n ×  n r  y)]
                                            P
                                                    x
                                                                                               (5.8.33)
                                              =−2 rα n − rω  2 n
                                                     x      y
                        Observe that the velocity of O is zero, as expected, but the acceleration of O is not zero.
                       To find the point C with zero acceleration, we can use Eqs. (5.8.11) and (5.8.12): specifically,
                       for a Cartesian (X–Y) axes system with origin at O, we find the coordinates of C to be:
                                                 2
                                                                       α
                                                  x − α˙˙
                                                ω ˙˙   y      ω 2  r − (  α ) − () 0  rαω 2
                                       x =  x +    Q    Q  =+              =−                  (5.8.34)
                                                           0
                                        C    Q   α 2  + ω 4      α 2  + ω 4    α 2  + ω 4
                       and
                                                                         ()
                                                  x + ω ˙˙
                                                                        2
                                                 α˙˙   2 y        r − ( α  α ) + ω 0  rω  4
                                        y =  y +   Q     Q  =+              =                  (5.8.35)
                                                            r
                                         C   Q    α 2 + ω 4       α 2 + ω 4   α 2  + ω 4
                       For positive values of ω and α, the position of C is depicted in Figure 5.8.3.
                        To verify the results, consider calculating the acceleration of C using the expression:
                                                  a = a + αα × QC +(ωω × QC)                   (5.8.36)
                                                        Q
                                                   C
                       where QC is:

                                                      rαω 2        rω  4   
                                              QC =−        n −  r −       n                (5.8.37)
                                                     α 2 + ω 4  x     α 2  + ω 4    y


                       Using Eq. (5.8.27), a  becomes:
                                        C
                                                        rαω 2           rω 4   
                                          a =−  rα n − α      n +  r −        n
                                                                  α
                                           C
                                                   x   α 2 + ω 4  y     α 2  + ω 4    x
                                                                                               (5.8.38)
                                                    rαω 2           rω 4   
                                               + ω 2     n + ω 2  r −     n = 0
                                                   α  2  + ω 4  x     α  2 + ω 4    y
                        Finally, we can check the consistency of Eqs. (5.8.18), (5.8.21), and (5.8.22): from Eqs.
                       (5.8.21) and (5.8.22), ξ and η are:

                                           ξ= ( [   − )( y ˙˙  y ˙˙  − )( x ˙˙  − )]
                                               1
                                                                              x ˙˙
                                               ∆  x P  x Q  Q  − ) −( y P  y Q  Q  P           (5.8.39)
                                                              P
   168   169   170   171   172   173   174   175   176   177   178