Page 170 - Dynamics of Mechanical Systems
P. 170

0593_C05_fm  Page 151  Monday, May 6, 2002  2:15 PM





                       Planar Motion of Rigid Bodies — Methods of Analysis                         151


                       Hence, Eq. (5.8.2) becomes:

                                             a = ˙˙  n + ˙˙  n = ( r sinα  θ + rω 2 cosθ  n )
                                              P
                                                       y
                                                 x
                                                  P  x  P  y                   x
                                                                                                (5.8.7)
                                                     r (
                                                 +− α  cosθ + rω 2  sin  n ) θ
                                                                      y
                       Then,  ˙˙ x   and  ˙˙ y   are:
                             P     P
                                                     ˙˙ x =  rα sin +θ  rω 2 cosθ
                                                      P
                       and

                                                    ˙˙ y =− rα cos +θ  rω  2 sinθ               (5.8.8)
                                                     P
                       Solving for r sinθ and r cosθ we obtain:

                                                             α x ˙˙ + ω 2 y ˙˙
                                                      rsinθ =  P     P
                                                               α + ω 4
                                                                2
                       and
                                                             ω 2 x ˙˙ − α y ˙˙
                                                      rcosθ =   P    P                          (5.8.9)
                                                               α + ω 4
                                                                2
                       From Figure 5.8.1, we see that C may be located relative to O by the equation:

                                              p =  x  n +  y  n =  p +  r
                                                C   C  x  C  y  P
                                                                                               (5.8.10)
                                                 =  x  n +  y  n + cosθ n + sinθ n
                                                              r
                                                                        r
                                                    P  x  P  y       x        y
                       This leads to the component and coordinate expressions:
                                                                         α
                                                                   ω 2 x − ˙˙
                                                                     ˙˙
                                                                          y
                                                x = x + cosθ = x +    P    P                    (5.8.11)
                                                        r
                                                 C   P          P    α 2 + ω 4
                       and
                                                                   α x + ω 2 y ˙˙
                                                                    ˙˙
                                                y =  y + sinθ = y +  P     P                   (5.8.12)
                                                        r
                                                 C   P          P    α 2 + ω 4
                        Equations (5.8.11) and (5.8.12) can be used to locate C  if we know the position and
                       acceleration of a typical point P of B and the angular speed and angular acceleration of
                       B. Then, once C is located, the acceleration of any other point Q may be obtained from
                       the expression:

                                                     a = αα × q + ωω ×(ωω × q)                 (5.8.13)
                                                      Q
                       where q is a vector locating Q relative to C.
   165   166   167   168   169   170   171   172   173   174   175