Page 165 - Dynamics of Mechanical Systems
P. 165

0593_C05_fm  Page 146  Monday, May 6, 2002  2:15 PM





                       146                                                 Dynamics of Mechanical Systems


                       and
                                           [
                                             θ
                                             ˙˙
                                                                ˙˙
                                       a O 3  = l cosθ 1 − lθ 2 ˙  1 sinθ 1  + lθ 2 cosθ  2 − lθ 2 ˙  2 sinθ 2] N  X
                                            [
                                               ˙˙
                                           +−lθ 1 sinθ 1  − lθ 2 ˙  1 cosθ 1  − lθ ˙˙ 2 sinθ 2 − lθ 2 ˙ 2 cosθ 2] N Z  (5.6.18)
                        Observe that using the local unit vectors again leads to simpler expressions (compare
                       Eqs. (5.6.11) and (5.6.12) with Eqs. (5.6.13) and (5.6.14)). Nevertheless, with the use of the
                       local unit vectors we have mixed sets in the individual equations. For example, in Eq.
                       (5.6.11), the unit vectors are neither parallel nor perpendicular; hence, the components are
                       not readily added. Therefore, for computational purposes, the use of the global unit vectors
                       is preferred.
                        The velocities and accelerations of the remaining points of the system may be obtained
                       similarly. Indeed, we can inductively determine the velocity and acceleration of the center
                       of a typical bar B  as:
                                      k

                                                                          l
                                           v G k  = lθ ˙  n + lθ ˙  n +…+ lθ ˙  n +( )θ ˙  n   (5.6.19)
                                                                           2
                                                  1 11   2  21      j  j1     k  k1
                       and
                                                       ˙˙
                                                ˙˙
                                                                         l
                                          a  G k  = lθ  n + lθ  n +…+ lθ ˙˙  n +( )θ ˙˙  n
                                                                           2
                                                 1 11   2  21      j  j1      k  k1
                                                                                               (5.6.20)
                                               − lθ ˙ 2 n − lθ ˙ 2 n −…− lθ ˙ 2 n −( )θ ˙ 2  n
                                                                           l
                                                                            2
                                                   1  13  2  23      j  j3     k  k3
                       where n , n , and θ  are associated with the bar B , immediately preceding B . In terms of
                              j1
                                 j3
                                                                   j
                                        j
                                                                                          k
                       N  and N , these expressions become:
                        X
                               Z
                                        [
                                                                θ
                                                                 ˙
                                          ˙
                                          θ
                                                                       + l
                                   v  G K  = l cosθ 1 + lθ ˙  2 cosθ 2  +…+l cosθ j ( )θ2  ˙  k cosθ k] N  X
                                                                  j
                                           1
                                          [
                                                                   ˙
                                             ˙
                                            θ
                                        +−l sinθ  1 − lθ ˙  2 sinθ 2  −…− l sinθ j ( )θ2  ˙  k sinθ k] N Z  (5.6.21)
                                                                   θ
                                                                          − l
                                                                    j
                                             1
                       and
                                        [
                                                                              ˙˙
                                          ˙˙
                                                                 ˙˙
                                                                          l 2
                                   a G k  = lθ 1 cosθ 1  + lθ ˙˙ 2 cosθ 2 +…+ lθ j cosθ j  +( )θ k cosθ k
                                         − lθ ˙ 2 sinθ  − lθ ˙ 2 sinθ  −…− lθ ˙ 2 sinθ  −( )θ ˙ 2 sinθ  N ]
                                                                          l 2
                                            1    1   2    2       j    j       k    k  X
                                                                                               (5.6.22)
                                                                                ˙˙
                                         +− [ lθ ˙˙  sinθ  − lθ  sinθ  −…− lθ sinθ −( ) 2  θ  sinθ
                                                                    ˙˙
                                                      ˙˙
                                                                             l
                                              1    1   2    2        j j  j      k    k
                                         −  θ l  ˙ 2  cosθ − l θ ˙ 2  cosθ −…− l θ ˙ 2  cosθ −( ) 2  θ ˙ 2 cosθ
                                                                           l
                                            1    1    2    2       j    j       k    k] N Z
                       The velocity and acceleration of  O  may be obtained from these latter expressions by
                                                       3
                       simply replacing the fraction ( /2) by  .
   160   161   162   163   164   165   166   167   168   169   170