Page 167 - Dynamics of Mechanical Systems
P. 167

0593_C05_fm  Page 148  Monday, May 6, 2002  2:15 PM





                       148                                                 Dynamics of Mechanical Systems


                       Let n  be a unit vector normal to the X–Y plane generated by n  × n . Then, ω may be
                                                                                     y
                                                                                 x
                           z
                       expressed as:
                                                           ωω= ωn                               (5.7.5)
                                                                 z
                       where ω is positive when B rotates counterclockwise, as viewed in Figure 5.7.1.
                                                  P
                        Using Eqs. (5.7.1) to (5.7.5), v  may be expressed as:
                                                                    ωω
                                                    p
                                                  v = ˙ x  n + ˙ ˙ n = − ×  r
                                                            y
                                                       P  x  P  y
                                                          n       n      n
                                                            x       y     z
                                                     =−    0       0     ω                      (5.7.6)
                                                         rcosθ   rsinθ   0
                                                     = r sinω  θ n − r cosω  θ n
                                                               x          y

                       By comparing components, we obtain:

                                               rsinθ =  x ˙  ω and  rcosθ = − y ˙  ω            (5.7.7)
                                                       P                  P
                        We can readily locate C using these results: from Eqs. (5.7.1), (5.7.2), and (5.7.7), we have:


                                     p =  p + =  x  n +  y  n = ( x + cosθ  n )  x ( y + sin  n ) θ  (5.7.8)
                                                                          +
                                              r
                                                                                r
                                                                 r
                                      C    P      C  x  C  y  P              P         y
                       Therefore, by comparing components, we have:
                                               x =  x − ˙ y ω and  y =  y + ˙ x ω               (5.7.9)
                                                C   P   P          C   P   P
                        Equation (5.7.9) shows that if we know the location of a typical point P of B, the velocity
                       of P, and the angular speed of B, we can locate the center C of zero velocity of B.
                        Let Q be a second typical point of B (distinct from P). Then, from Eq. (5.7.9) we have:

                                               x =  x − ˙ y  ω and  y =  y + ˙ x  ω            (5.7.10)
                                                C   Q   Q         C   Q   Q
                        By comparing the terms of Eqs. (5.7.9) and (5.7.10), we have:


                                         x − ˙ y ω  =  x − ˙ y  ω and  y + ˙ x ω =  y + ˙ x  ω  (5.7.11)
                                          P   P     Q   Q         P   P      Q  Q

                       Solving for ω we obtain:

                                                     ˙ x  − x         ˙ y  − ˙ y
                                                 ω =  Q  P      and     ω =  P  Q              (5.7.12)
                                                    y  − y            x  − x
                                                     P   Q             P   Q
   162   163   164   165   166   167   168   169   170   171   172