Page 416 - Dynamics of Mechanical Systems
P. 416

0593_C11_fm  Page 397  Monday, May 6, 2002  2:59 PM





                       Generalized Dynamics: Kinematics and Kinetics                               397



                                                                    n
                                                                      1               n
                                                                                       3
                                                                          n  2θ
                                                             θ
                                                                   n
                                                                     1r
                                                                                           n
                                                                                            2
                       FIGURE 11.12.4                              θ         n  2r
                       Unit vector geometry for the double-
                       rod pendulum.                                                n  1

                        In our earlier analysis of this system we found that the mass center velocities and the
                       angular velocities of the rods were (see Eqs. (11.10.12)):

                                            v G 1  = (l  2)θ ˙  n  ,  v  G 2  = lθ ˙  n +(l  2)θ ˙  n
                                                      1  1θ        1  1θ      2  2θ
                                                                                              (11.12.12)
                                            ωω B 1  = θ ˙  n  , ωω B 2  = θ ˙  n
                                                 1  3              2  3

                       where, as before, the unit vectors are as shown in Figure 11.12.4.
                        The kinetic energy of the system is then:


                                          K = ( ) ( ) +( ) ( )      2
                                                       2
                                                                 ωω
                                                     G
                                                                   1 B
                                                    v
                                                          12 I
                                              12 m
                                                      1
                                                              G
                                                               1
                                                     v ( ) +( ) ( )    2
                                                         2
                                                       G
                                                                    B
                                                12
                                              +( )m    2    12 I G 2  ωω  2
                                                                    )
                                                                       2 ˙
                                            = ( ) (l 2  ) 4 θ 2 ˙  1  +( )(1 12 ml θ l 2 1
                                                            1 2
                                              12 m
                                                     [
                                                      2 ˙
                                                            2 ˙ ˙
                                              +( )m l θ 1 2 + l θ θ  2 cos θ  − ) + lθ 1 (  2  4 4)θ 2 ˙  2  (11.12.13)
                                                12
                                                              1
                                                                    ( 2
                                              +( 12) ( 1 12)ml 2 ˙ θ 2
                                                   m
                                                              2
                                            = ( 23)ml 2 ˙ θ 1 ( 1 2)ml 2 ˙ ˙  2  cos  2 (θ  − θ 1)
                                                                θ θ
                                                       +
                                                      2
                                                                 1
                                              +( 16)ml 2 ˙ θ 2 2
                       Then, from Eq. (11.12.5), the generalized inertia forces  F *   and  F *   are:
                                                                         θ 1    θ 2
                                                          θ cos(
                                               θ −(
                                 F =−(  4 3)ml 2 ˙˙  12)ml 2 ˙˙  θ − ) +( 12)ml 2 ˙ θ sin( θ − )  (11.12.14)
                                                                    θ
                                                                                         θ
                                  *
                                                                                 2
                                  θ 1           1           2    2   1           2    2   1
                       and
                                               θ −(
                                 F =−(  13)ml 2 ˙˙  12)ml 2 ˙˙ θ cos( θ − ) −( 12)ml 2 ˙ θ sin( θ − )  (11.12.15)
                                                                    θ
                                                                                         θ
                                                                                 2
                                   *
                                  θ 2           2           1    2   1           1    2   1
                       These results are identical with the Eqs. (11.10.21) and (11.10.22).
   411   412   413   414   415   416   417   418   419   420   421