Page 419 - Dynamics of Mechanical Systems
P. 419

0593_C11_fm  Page 400  Monday, May 6, 2002  2:59 PM





                       400                                                 Dynamics of Mechanical Systems


                       The  first two of these equations are nonintegrable in terms of elementary functions;
                       therefore, the system is nonholonomic.
                        With three constraint equations, the disk has three degrees of freedom. These may
                       conveniently be represented by the angles θ, φ, and ψ, and in terms of these angles the
                       mass center velocity and the disk angular velocity are (see Eqs. (11.10.41) and (11.10.42)):

                                                   v = ( ψφ ˙     n ) θ  − rθ ˙  n            (11.12.25)
                                                       r ˙
                                                          + sin
                                                    G              1     2
                       and

                                                                 )
                                                                      φ
                                                   ˙
                                                                      ˙
                                                            ˙
                                                            φ
                                               ωω= θn  +( ψ ˙  + sinθ n  + cosθn              (11.12.26)
                                                     1             2         3
                       Hence, the kinetic energy of the disk is:
                                           K = ( ) m( ) + ωω  ⋅ ⋅ωω
                                                           1
                                                        2
                                               12
                                                     v
                                                      G        I
                                                           2
                                                               2
                                             =  1 mr ( ψφ ˙   ) + r θ 2                      (11.12.27)
                                                                  2 ˙
                                                       + sinθ
                                                   2
                                                      ˙
                                               2                    
                                                                     2
                                               +  1   I  θ 2 ˙  + ( ψI  ˙  + sinφ ˙  θ ) + ( cosφI  ˙  ) θ  2 
                                                2     11  22          33         
                       where the moments of inertia I , I , and I  are:
                                                            33
                                                     22
                                                  11
                                                  I =  I = mr 2  4 ,  I = mr 2  2             (11.12.28)
                                                  11   33          22
                        Assuming (erroneously) that Eq. (11.12.5) can be used to determine the generalized
                       inertia forces, we have:
                                                 ∂ 
                                        F =−  d   K  +  ∂K
                                                
                                         *
                                                  ˙
                                         θ
                                              dt   ∂ θ   ∂ θ
                                                                                              (11.12.29)
                                                              ˙ ˙
                                                                               θ
                                                                   θ
                                                                           ˙ 2
                                           =−mr  2  ( [  54  ˙˙  3  ψ φcos −( ) φ sin cos θ ]
                                                      θ ) −( ) 2
                                                                       54
                                                           θ
                                                                              ˙˙
                                          *
                                         F =−mr  2 [ ( ) ψ ˙˙ sin +( ) ˙˙  2  θ +( ) 4  φcos 2 θ
                                                               32
                                                   32
                                                                           1
                                                                  φsin
                                          θ
                                                                  ˙ ˙
                                                          θ
                                                                       θ
                                                    ˙ ˙
                                                3
                                              +( ) 2  ψθ cos +(11 4 ) θφsin cos θ ]           (11.12.30)
                                                                        ˙ ˙
                                                             ˙˙ +
                                                                      +
                                                                ˙˙
                                                *
                                                         32
                                               F =−mr  2 [ ( )( ψφsin θ φθcos θ)              (11.12.31)
                                                ψ
                                                                                      *
                                                                                     F
                       In Section 11.10, in Eqs. (11.10.53), (11.10.54), and (11.10.55), we found  ,  F φ * , and  F ψ *  to be:
                                                                                     θ
                                                                               θ
                                                      ˙˙
                                                             ˙ ˙
                                                                   θ
                                         *
                                                                          ˙ 2
                                                         3
                                        F =−mr  2  ( [  54  θ ) −( ) 2  ψ φ cos −( ) φ sin cos θ ]  (11.12.32)
                                                                       54
                                         θ
   414   415   416   417   418   419   420   421   422   423   424