Page 423 - Dynamics of Mechanical Systems
P. 423

0593_C11_fm  Page 404  Monday, May 6, 2002  2:59 PM





                       404                                                 Dynamics of Mechanical Systems


                                                          B
                                                        R
                       P11.4.4: See Problem P11.4.3. Express  ωω ωω  in terms of the unit vectors N , N , and N .
                                                                                                  Z
                                                                                          Y
                                                                                       X
                       P11.4.5: See Problems 11.4.3 and P11.4.4. Find the partial angular velocities of B in R for
                       α, β, and γ. (Express the results in terms of both n , n , and n  and N , N , and N .
                                                                             z
                                                                      y
                                                                   x
                                                                                    X
                                                                                               Z
                                                                                        Y
                       P11.4.6: See Problems P11.4.3, P11.4.4, and P11.4.5. Let O be the origin of a Cartesian axis
                       system X, Y, Z fixed in R, and let Q be a vertex of B as in Figure P11.4.6. Let the velocity
                       of Q in R be expressed alternatively as:
                                                    V =  XN +  YN +  ZN
                                                   R  Q   ˙     ˙     ˙
                                                            X     Y     Z
                       and
                                                     R  Q
                                                      V = ˙ xn + ˙ yn + ˙ zn
                                                             x    y    z
                                                          ˙
                                                             ˙
                                              ˙ z
                                     ˙ x ˙ y
                                                          X Y
                          a. Express  ,  , and   in terms of  ,  , and  . Z ˙
                                               ˙
                                        ˙
                                     ˙
                                                           ˙ x ˙ y
                                              Z
                                    X Y
                          b. Express  ,  , and   in terms of  ,  , and  . ˙ z
                                                                                         a
                                                                               c            P
                                                                                              b
                                                             N        n  y
                                                              Z
                                                                                       n  z
                                                                                            B
                                                               O          Q
                                                                                n
                                                                      N          x
                       FIGURE P11.4.6                          N        Y
                       A box B moving in a reference frame R.  X   X
                       P11.4.7: See Problem P11.4.6. Find the partial velocities of Q in R for the coordinates x, y,
                       z, X, Y, and Z. Express the results in terms of both n , n , and n  and N , N , and N .
                                                                     x  y       z     X   Y       Z
                       P11.4.8: See Problem 11.4.6. Let the sides of the box B have lengths a, b, and c, as represented
                       in Figure P11.4.6, and let P be a vertex of B as shown. Find the velocity of P in R. Express
                       the results in terms of both n , n , and n  and N , N , and N . Use either  ,  , and   or
                                                                                                  ˙ z
                                                                                         ˙ x ˙ y
                                                                             Z
                                                    y
                                                 x
                                                                  X
                                                           z
                                                                      Y
                       ˙
                       X Y ˙     Z ˙
                        ,  , and   for convenience.
                       P11.4.9: See Problems P11.4.3 to P11.4.8. Find the partial velocities of P  in R  for the
                       coordinates x, y, z, X, Y, Z, α, β, and γ. Express the results in terms of both n , n , and n
                                                                                           x  y      z
                       and N , N , and N .
                            X   Y       Z
                       Section 11.5  Generalized Forces: Applied (Active) Forces
                       P11.5.1: A simple pendulum with length   of 0.5 m and bob P mass of 2 kg is subjected
                       to a constant horizontal force F of 5 N as represented in Figure P11.5.1. Determine the
                       generalized active force F  on P for the orientation angle θ. (Include the contributions of
                                              θ
                       F, gravity, and the cable tension.)
   418   419   420   421   422   423   424   425   426   427   428