Page 438 - Dynamics of Mechanical Systems
P. 438

0593_C12_fm  Page 419  Monday, May 6, 2002  3:11 PM





                       Generalized Dynamics: Kane’s Equations and Lagrange’s Equations             419




                                                        O
                                                                                       n
                                                                                         2
                                                              θ    G  1
                                                               1                  n
                                                                        B          1
                                                                         1
                                                                     Q        G
                                                                           θ 2   2
                       FIGURE 12.2.3                                                 B
                                                                                      2
                       Double-rod pendulum.

                       or

                                                     F =−(  3 mg 2)sin θ                      (12.2.16)
                                                               l
                                                      θ 1              1
                       and


                                                  F = v  G 1 ⋅( mg ) + v  G 2 ⋅( mg )
                                                                        n
                                                             n
                                                                   ˙
                                                       ˙
                                                  θ 2  θ 2    1    θ 2    1
                       or
                                                      F =−( mg 2)sin θ                        (12.2.17)
                                                               l
                                                       θ 2            2
                        In Sections 11.10 and 11.12, Eqs. (11.10.21), (11.10.22), (11.12.14), and (11.12.15), we
                       found the generalized inertia forces F *   and  F *   to be:
                                                        θ 1     θ 2
                                                                          m θ sin(
                                                     m θ cos(
                                F =−(  4 3) l 2 ˙˙  12) l 2 ˙˙  θ − ) +( 12) l 2 ˙  2  θ − )  (12.2.18)
                                          m θ −(
                                                                  θ
                                                                                       θ
                                  *
                                 θ 1           1          2     2  1           2     2  1
                       and
                                                                           m θ sin(
                                                      m θ cos(
                                 F =−( 13) l 2 ˙˙  12) l 2 ˙˙  θ − ) −( 12) l 2 ˙  2  θ − )   (12.2.19)
                                          m θ −(
                                                                                       θ
                                                                  θ
                                  *
                                  θ 2          2          1     2   1          1     2   1
                        Kane’s equations then produce the governing equations:
                                                          F + F *  =  0                       (12.2.20)
                                                          θ 1  θ 1
                       and
                                                          F + F *  =  0                       (12.2.21)
                                                          θ 2  θ 2
                       or

                                 ( 4 3) θ 1  +( 12)θ 2  cos  2 (θ  − θ 1) −( 12)θ 2 ˙  2  sin  2 (θ  − θ 1) +  3 ( g  2 ) sinθ 1  =  0  (12.2.22)
                                     ˙˙
                                             ˙˙
                                                                                 l
   433   434   435   436   437   438   439   440   441   442   443