Page 441 - Dynamics of Mechanical Systems
P. 441

0593_C12_fm  Page 422  Monday, May 6, 2002  3:11 PM





                       422                                                 Dynamics of Mechanical Systems



                                                                                  Z
                                                        n
                                                          3                          N  3
                                                               θ
                                                                   D      n  2
                                                               ψ
                                                                  G
                                                         X
                                                                     φ                    Y
                                                          N  1
                                                                   c
                       FIGURE 12.2.6                            n                    N  2
                       A rolling circular disk.          L       1
                       not contribute to the generalized active forces. Regarding the weight force, we found in
                       Section 11.10 that the partial velocities of G relative to θ, φ, and ψ are (see Eq. (11.10.43)):

                                              v =−  r n ,  v =  r sinθ n ,  v =  n r  1       (12.2.36)
                                               G
                                                                         G
                                                           G
                                                                         ˙ ψ
                                                           ˙ φ
                                                ˙ θ
                                                      2
                                                                    1
                       Hence, the generalized active forces are:
                                                 F =− (  mg ) ⋅− (  r ) =  mgrsin θ           (12.2.37)
                                                         N
                                                                n
                                                  θ
                                                           3
                                                                 2
                                                   F =− (  mg ) ⋅− (  rsin θ )                (12.2.38)
                                                           N
                                                                       n
                                                    φ
                                                                        1
                                                             3
                       and
                                                     F =− (  mg ) ⋅( ) = 0                    (12.2.39)
                                                             N
                                                                  n
                                                                  r
                                                     ψ
                                                                    1
                                                               3
                        Also in Section 11.10 we found that the generalized inertia forces for the angles are (see
                       Eqs. (11.10.53), (11.10.54), and (11.10.55)):
                                               [
                                                             ˙ ˙
                                                     ˙˙
                                                                  θ
                                        F =  mr −( ) +( ) 2  ψ φcos +( )  φ sin cos θ ]       (12.2.40)
                                                                               θ
                                                     θ
                                         *
                                                                          ˙ 2
                                              2
                                                         3
                                                                      54
                                                 54
                                         θ
                                              [
                                                                            ˙ ˙
                                                        θ
                                      F =  mr −( )  ψ ˙˙ sin −( ) ˙˙  2 θ −( ) φθsin cos θ
                                                                                 θ
                                        *
                                             2
                                                            32
                                                                φsin
                                                32
                                                                        52
                                       φ
                                                                                              (12.2.41)
                                           −( )  ˙˙  2  θ +( ) 2  ψθcos θ]
                                                             ˙ ˙
                                                 φcos
                                             14
                                                         1
                       and
                                                   [
                                                                ˙˙
                                                                           ˙ ˙
                                                                    θ
                                           F =− mr ( ) +( )     φsin +( )  θφcos θ ]          (12.2.42)
                                                  2
                                            *
                                                        ψ ˙˙
                                                                       52
                                                     32
                                                            32
                                           ψ
                        Kane’s equations then lead to the expressions:
                                               F +  F = 0  ,  F +  F = 0  ,  F +  F = 0       (12.2.43)
                                                                          *
                                                   *
                                                               *
                                                           φ
                                                              φ
                                                   θ
                                                                      ψ
                                               θ
                                                                          ψ
   436   437   438   439   440   441   442   443   444   445   446