Page 506 - Dynamics of Mechanical Systems
P. 506

0593_C14_fm  Page 487  Tuesday, May 7, 2002  6:56 AM





                       Stability                                                                   487


                        By inspection, we see that the ω  (i = 1, 2, 3) of Eqs. (14.4.11), (14.4.12), and (14.4.13) are
                                                     i
                       solutions of Eqs. (14.4.8), (14.4.9), and (14.4.10). To test for the stability of this solution, let
                       small disturbances to the motion occur such that:

                                                          ω = Ω + ω  *                        (14.4.14)
                                                           1      1

                                                          ω =+   ω *                          (14.4.15)
                                                              0
                                                           2      2
                                                          ω =+   ω *                          (14.4.16)
                                                              0
                                                           3      3
                       where as before the ( ) quantities are small. Then, by substituting these expressions into
                                          *
                       Eqs. (14.4.8), (14.4.9), and (14.4.10), we have:

                                                   −I ˙ ω  *  + ω ω * (I  − ) = 0             (14.4.17)
                                                            *
                                                                   I
                                                     11  1  2  3  22  33
                                                              ω
                                                        ω
                                                 −I ˙ ω  *  + (Ω + )(I  − ) = 0               (14.4.18)
                                                                *
                                                          *
                                                                      I
                                                   22  2  3     1  33  11
                                                 −I ˙ ω  *  +(Ω  + ) (I  − ) = 0              (14.4.19)
                                                            ω
                                                               ω
                                                                 *
                                                              *
                                                                      I
                                                   33  3     1   2  11  22
                       By neglecting products of small quantities, these equations take the form:
                                                            ˙ ω =  0                          (14.4.20)
                                                             *
                                                             1
                                                   −I ˙ ω  *  + ω Ω (I  − ) = 0               (14.4.21)
                                                            *
                                                                   I
                                                     22  2  3   33  11
                                                   −I ˙ ω  *  + ω * (I  − ) = 0               (14.4.22)
                                                           Ω
                                                                   I
                                                     33  3    2  11  22
                        Equation (14.4.20) has a solution:
                                                     ω =  ω , a constant                      (14.4.23)
                                                           *
                                                      *
                                                      1    10
                       Equations (14.4.21) and (14.4.22) may be solved by eliminating one of the variables (say,  ω  *  )
                                                                                                    3
                       between the equations. Specifically, from Eq. (14.4.21), we have:
                                                              I
                                                      ω =      22   ω ˙  *                    (14.4.24)
                                                        *
                                                        3  Ω  33 (I  − I 11)  2
                       Then, by substituting into Eq. (14.4.22), we obtain:

                                                  −II
                                                              Ω
                                                    33 22  ˙˙ ω  *  + (I  − )ω *  = 0
                                                                    I
                                                Ω (I 33 − )  2   11  22  2
                                                       I
                                                       11
   501   502   503   504   505   506   507   508   509   510   511