Page 523 - Dynamics of Mechanical Systems
P. 523

0593_C14_fm  Page 504  Tuesday, May 7, 2002  6:56 AM





                       504                                                 Dynamics of Mechanical Systems


                        As with Eqs. (14.6.49) and (14.6.50), Eqs. (14.6.77) and (14.6.78) are simultaneous, homo-
                       geneous, linear, algebraic equations. Thus, there is a nonzero solution to these equations
                       only if the determinant of the coefficients is zero. That is,

                                                 ( ˆ a λ + )( b λ + ) −  ˆ a b λ =  0         (14.6.79)
                                                               ˆ
                                                          ˆ
                                                                     ˆ
                                                            2
                                                                       2
                                                    2
                                                       ˆ a
                                                               b
                                                   1
                                                                    2 2
                                                                3
                                                        3
                                                           1
                       or
                                               ˆ a b λ +( ˆ ab +  ˆ  ˆ a − ˆ ab λ )  2  +  ˆ ab =
                                                 ˆ
                                                        ˆ
                                                                  ˆ
                                                                         ˆ
                                                   4
                                                11     31  b 3 1  2 2   33   0                (14.6.80)
                       or
                                                        ˆ
                                                                  ˆ
                                                       Aλ + Bλ + C =  0                       (14.6.81)
                                                             ˆ 2
                                                          4
                                ˆ
                             ˆ
                                       ˆ
                             A B
                                       C
                       where  ,  , and   are:
                                                            ˆ
                                                           A =  ˆ a b ˆ                       (14.6.82)
                                                               11
                                                           ˆ
                                                       ˆ
                                                      B =  ˆ a b +  b ˆ  ˆ a −  ˆ a b ˆ       (14.6.83)
                                                          31   3 1  2 2
                                                           C =  ˆ a b ˆ                       (14.6.84)
                                                           ˆ
                                                               33
                                  2
                       Solving for λ  we have:
                                                                 4 ]
                                                                      /
                                                                   ˆˆ
                                                          ˆ
                                                          B
                                                     λ =  −±[B 2 ˆ  − AC  12                  (14.6.85)
                                                      2
                                                                ˆ
                                                               2A
                                              *
                                                    *
                        As before, the solutions θ  and ψ  of Eq. (14.6.74) are stable if λ does not have any positive
                       real part. From Eq. (14.6.85), this means that stability occurs if (see Eq. (14.6.58)):
                                                 ˆ ˆ
                                                                    ˆˆ
                                                               ˆ 2
                                                BA > 0 and    [ B − 4 AC]  / 12  <  B ˆ       (14.6.86)
                                                                                      ˆ
                                                                                   ˆ
                                                                                             ˆ
                        From Eqs. (14.6.73), (14.6.82), (14.6.83), and (14.6.84), we see that  ,  , and   are:
                                                                                   A B
                                                                                            C
                                                            ˆ
                                                            A = 15                            (14.6.87)
                                                  ˆ
                                                  B = 15φ ˙ 2  + 10 ( [  m M) − 12 ]( g r)    (14.6.88)
                                                        0
                       and
                                                         )(
                                                                       )(
                                                              2
                                               ˆ
                                                                            φ
                                                                            ˙ 2
                                               C =− ( 8  m Mg r) − (  m Mg r) 0               (14.6.89)
                                                                10
   518   519   520   521   522   523   524   525   526   527   528