Page 288 - Electromagnetics
P. 288

Let us calculate v e for a plane wave propagating in a lossless, source-free medium where
                              √
                            ˆ
                        k = kω µ . By(4.216) and (4.223) we have
                                                   ˜
                                          ˜
                                          E(r,ω) = E 0 (ω)e − jβ ˆ k·r ,                      (4.262)

                                                     ˆ
                                                        ˜
                                                     k × E 0 (ω)
                                          ˜                     − jβ ˆ k·r  ˜  − jβ ˆ k·r
                                          H(r,ω) =             e     = H 0 (ω)e   .           (4.263)
                                                        η
                        We can compute the time-average stored energydensityusing the energytheorem (4.68).
                        In point form we have
                                                      ∂H   ∂E
                                                       ˜     ˜
                                                 ˜ ∗
                                          −∇ · E ×       +    × H        = 4 j w em  .        (4.264)
                                                                 ˜ ∗
                                                      ∂ω   ∂ω
                                                                     ω= ˇω
                        Upon substitution of (4.262) and (4.263) we find that we need to compute the frequency
                                          ˜
                                    ˜
                        derivatives of E and H. Using
                                          ∂  − jβ ˆ k·r     ∂  − jβ ˆ k·r    dβ  dβ  − jβ ˆ k·r
                                                                        ˆ
                                            e     =     e          =− jk · r  e
                                         ∂ω           ∂β       dω          dω
                                                ˆ
                        and remembering that k = kβ,wehave
                                                   ˜
                                         ˜
                                       ∂E(r,ω)    dE 0 (ω)  − jk·r         dk     − jk·r
                                                                ˜
                                               =        e    + E 0 (ω) − jr ·  e    ,
                                          ∂ω        dω                     dω
                                                   ˜
                                         ˜
                                       ∂H(r,ω)    dH 0 (ω)  − jk·r          dk     − jk·r
                                                                ˜
                                               =        e    + H 0 (ω) − jr ·   e    .
                                          ∂ω        dω                      dω
                        Equation (4.264) becomes
                                                   ˜        ˜
                                                  dH 0 (ω)  dE 0 (ω)
                                          ˜ ∗                       ˜ ∗
                                    −∇ · E (ω) ×         +        × H (ω)−
                                           0
                                                                     0
                                                   dω        dω

                                                     ˜
                                                             ˜
                                          dk
                                              ˜ ∗
                                                                    ˜ ∗
                                    − jr ·   E (ω) × H 0 (ω) + E 0 (ω) × H (ω)     = 4 j w em  .
                                               0
                                                                     0
                                          dω
                                                                            ω= ˇω
                        The first two terms on the left-hand side have zero divergence, since these terms do not
                        depend on r. Bythe product rule (B.42) we have


                                      ˜ ∗   ˜      ˜       ˜ ∗          dk
                                    E ( ˇω) × H 0 ( ˇω) + E 0 ( ˇω) × H ( ˇω) ·∇ r ·     = 4 w em  .
                                     0
                                                            0
                                                                        dω
                                                                             ω= ˇω
                        The gradient term is merely

                                         dk              dk x   dk y  dk z        dk
                                   ∇ r ·          =∇ x      + y    + z         =        ,
                                         dω     ω= ˇω    dω     dω    dω     ω= ˇω  dω    ω= ˇω
                        hence

                                                                      dk
                                        ˜ ∗     ˜      ˜       ˜ ∗
                                        E ( ˇω) × H 0 ( ˇω) + E 0 ( ˇω) × H ( ˇω) ·     = 4 w em  .  (4.265)
                                         0                      0
                                                                      dω
                                                                         ω= ˇω
                        Finally, the left-hand side of this expression can be written in terms of the time-average
                        Poynting vector. By (4.260) we have
                                          1          
   1
                                                            ˜
                                               ˇ
                                                                                  ˜
                                                                   ˜ ∗
                                                                           ˜ ∗
                                                   ˇ ∗
                                    S av =  Re E × H   =   E 0 ( ˇω) × H ( ˇω) + E ( ˇω) × H 0 ( ˇω)
                                                                            0
                                                                    0
                                          2              4
                        © 2001 by CRC Press LLC
   283   284   285   286   287   288   289   290   291   292   293