Page 293 - Electromagnetics
P. 293

r
                                           E ˜ r  r  r           ˆ xk − ˆ zk r  r  r
                                                                         ˜ r − j(k x x+k z z)
                                                            ˜ r
                                     ˜ r
                                     H = ˆ y    − j(k x x+k z z) ,  E =  z  x  E e  ,
                                             e

                                           η 1                      k 1
                               r 2
                                      r 2
                                            2
                                                              ˜ t
                        where (k ) + (k ) = k . Similarly, letting E be the amplitude of the transmitted field
                               x      z     1
                        we have
                                                                     t
                                                                          t ˜ t
                                                                 −ˆ xk + ˆ zk E ⊥ − j(k x x+k z z)
                                                                                     t
                                                                                  t
                                                 t
                                                     t
                                     ˜ t
                                              − j(k x x+k z z)
                                           ˜ t
                                                            ˜ t
                                                                    z
                                                                         x
                                     E = ˆ yE e       ,    H =                e        ,
                                      ⊥     ⊥                ⊥
                                                                     k 2   η 2
                                           ˜ t
                                           E      t  t           ˆ xk − ˆ zk t  t  t
                                                                  t
                                                            ˜ t
                                                                         ˜ t − j(k x x+k z z)
                                     ˜ t
                                              e
                                     H = ˆ y    − j(k x x+k z z) ,  E =  z  x  E e  ,

                                           η 2                     k 2
                                      t 2
                               t 2
                                            2
                        where (k ) + (k ) = k .
                               x      z     2
                                                                  ˜ i ˜ r ˜ t
                          The relationships between the field amplitudes E , E , E , and between the components
                                                                  r
                                                                        t
                        of the reflected and transmitted wave vectors k and k , can be found byapplying the
                        boundaryconditions. The tangential electric and magnetic fields are continuous across
                        the interface at z = 0:
                                                                      ˜ t
                                                          ˜ r
                                                     ˜ i
                                                 ˆ z × (E + E )| z=0 = ˆ z × E | z=0 ,
                                                     ˜ i
                                                          ˜ r
                                                                      ˜ t
                                                 ˆ z × (H + H )| z=0 = ˆ z × H | z=0 .
                        Substituting the field expressions, we find that for perpendicular polarization the two
                        boundaryconditions require
                                                                 r
                                                                           t
                                                       i
                                                           ˜ r
                                                                      ˜ t
                                                 ˜ i
                                                 E e − jk x x  + E e − jk x x  = E e − jk x x ,  (4.274)
                                                  ⊥         ⊥          ⊥
                                                         r ˜ r
                                             i ˜ i
                                                                       t ˜ t
                                            k E          k E          k E
                                                    i
                                                                 r
                                                                              t
                                             z  ⊥ − jk x x  z  ⊥ − jk x x  z  ⊥ − jk x x
                                                 e    +       e    =       e    ,             (4.275)
                                            k 1 η 1      k 1 η 1      k 2 η 2
                        while for parallel polarization theyrequire
                                             k  i        k r         k  t
                                                                 r
                                                     i
                                                                             t
                                              z  ˜ i − jk x x  z  ˜ r − jk x x  z  ˜ t − jk x x
                                               E e     +   E e     =   E e    ,               (4.276)

                                             k 1         k 1         k 2
                                                                      ˜ t
                                                 ˜ i
                                                 E         E ˜ r     E
                                                       i
                                                                 r
                                                                           t
                                                    − jk x x    − jk x x    − jk x x
                                                   e    +    e     =    e    .                (4.277)
                                                 η 1       η 1       η 2
                        For the above to hold for all x we must have the exponential terms equal. This requires
                                                                  t
                                                              r
                                                         i
                                                        k = k = k ,                           (4.278)
                                                         x
                                                                  x
                                                              x
                                                           i  r     t        i 2   i 2    r 2   r 2
                        and also establishes a relation between k , k , and k . Since (k ) +(k ) = (k ) +(k ) =
                                                           z  z     z        x     z      x     z
                                         r
                         2
                                               i
                        k , we must have k =±k . In order to make the reflected wavefronts propagate away
                         1               z     z
                                                                  i
                                                                                        i
                                                                            t
                                                                                              r
                                                        i
                                                  r
                                                                       r
                        from the interface we select k =−k . Letting k = k = k = k 1x and k =−k = k 1z ,
                                                  z     z         x    x    x           z     z
                        we maywrite the wave vectors in region 1 as
                                                                 r
                                               i
                                              k = ˆ xk 1x + ˆ zk 1z ,  k = ˆ xk 1x − ˆ zk 1z .
                               t 2
                                           2
                                     t 2
                        Since (k ) + (k ) = k , letting k 2 = β 2 − jα 2 we have
                               x     z     2


                                    t     2    2             2           2   2     t − jγ  t
                                   k =   k − k   =  (β 2 − jα 2 ) − (β 1 − jα 1 ) sin θ i = τ e  .
                                    z     2    1x
                        Squaring out the above relation, we have
                                                                t
                                                                      t 2
                                                         t 2
                                              A − jB = (τ ) cos 2γ − j(τ ) sin 2γ t
                        © 2001 by CRC Press LLC
   288   289   290   291   292   293   294   295   296   297   298