Page 297 - Electromagnetics
P. 297

t
                        that if A = 0 then τ = 0 and from (4.293) we have θ t = π/2. This defines the critical
                        angle, which from (4.295) is
                                                           2
                                                          β 2      −1  µ 2   2
                                                      −1
                                                θ c = sin  2  = sin         .
                                                          β           µ 1   1
                                                           1
                        Therefore

                                                           0,    θ i <θ c ,
                                                      t
                                                     γ =
                                                           π/2,θ i >θ c .
                        Using these we can write down the transmitted wave vector from (4.291):
                                                                    √

                                                          ˆ xβ 1 sin θ i + ˆ z |A|,  θ i <θ c ,
                                          t    t    t
                                         k = k + jk =                √                        (4.296)
                                                          ˆ xβ 1 sin θ i − j ˆ z |A|,θ i >θ c .
                        By(4.293) we have
                                                          β 1 sin θ i      β 1 sin θ i
                                                                         =
                                          sin θ t =
                                                    2  2      2   2   2       β 2
                                                   β sin θ i + β − β sin θ i
                                                    1         2   1
                        or
                                                      β 2 sin θ t = β 1 sin θ i .             (4.297)
                        This is known as Snell’s law of refraction. With this we can write for θ i <θ c
                                                      2    2  2      2  2
                                                 A = β − β sin θ i = β cos θ t .
                                                      2   1         2
                        Using this and substituting β 2 sin θ t for β 1 sin θ i , we mayrewrite (4.296) for θ i <θ c as
                                               t
                                                         t
                                                   t
                                              k = k + jk = ˆ xβ 2 sin θ t + ˆ zβ 2 cos θ t .  (4.298)
                        Hence the transmitted plane wave is uniform with k = 0. When θ i >θ c we have from
                                                                      t
                        (4.296)

                                                                          2
                                                                      2
                                                                                2
                                            t
                                                             t
                                           k = ˆ xβ 1 sin θ i ,  k =−ˆ z β sin θ i − β .
                                                                      1         2
                              t
                        Since k and k t    are not collinear, the plane wave is nonuniform. Let us examine the
                        cases θ i <θ c and θ i >θ c in greater detail.
                         Case 1: θ i <θ c . By(4.289)–(4.290) and (4.298) the wave vectors are
                                                    i
                                                   k = ˆ xβ 1 sin θ i + ˆ zβ 1 cos θ i ,
                                                    r
                                                   k = ˆ xβ 1 sin θ i − ˆ zβ 1 cos θ i ,
                                                    t
                                                   k = ˆ xβ 2 sin θ t + ˆ zβ 2 cos θ t ,
                        and the wave impedances are
                                                        η 1             η 2
                                                 Z 1⊥ =     ,    Z 2⊥ =    ,
                                                       cos θ i         cos θ t
                                               Z 1  = η 1 cos θ i ,  Z 2  = η 2 cos θ t .
                        The reflection coefficients are
                                       ˜    η 2 cos θ i − η 1 cos θ t  ˜  η 2 cos θ t − η 1 cos θ i
                                        ⊥ =                 ,       =                .        (4.299)
                                            η 2 cos θ i + η 1 cos θ t  η 2 cos θ t + η 1 cos θ i



                        © 2001 by CRC Press LLC
   292   293   294   295   296   297   298   299   300   301   302