Page 363 - Electromagnetics
P. 363

We assume the material constants are symmetric about some plane, say z = 0. Then
                                                     (x, y, −z) =  (x, y, z),
                                                   µ(x, y, −z) = µ(x, y, z),
                                                   σ(x, y, −z) = σ(x, y, z).
                        That is, with respect to z the material constants are even functions. We further assume
                        that the boundaries and boundary conditions, which guarantee uniqueness of solution, are
                        also symmetric about the z = 0 plane. Then we define two cases of reflection symmetry.


                        Conditions for even symmetry.    We claim that if the sources obey
                                    i
                                                                              i
                                                                 i
                                               i
                                   J (x, y, z) = J (x, y, −z),  J (x, y, z) =−J (x, y, −z),
                                    x
                                               x
                                                                mx
                                                                              mx
                                               i
                                    i
                                                                 i
                                                                              i
                                   J (x, y, z) = J (x, y, −z),  J (x, y, z) =−J (x, y, −z),
                                    y
                                                                              my
                                                                my
                                               y
                                                                 i
                                    i
                                                 i
                                                                             i
                                   J (x, y, z) =−J (x, y, −z),  J (x, y, z) = J (x, y, −z),
                                                                mz
                                                                             mz
                                                 z
                                    z
                        then the fields obey
                                   E x (x, y, z) = E x (x, y, −z),  H x (x, y, z) =−H x (x, y, −z),
                                   E y (x, y, z) = E y (x, y, −z),  H y (x, y, z) =−H y (x, y, −z),
                                   E z (x, y, z) =−E z (x, y, −z),  H z (x, y, z) = H z (x, y, −z).
                        The electric field shares the symmetry of the electric source: components parallel to the
                        z = 0 plane are even in z, and the component perpendicular is odd. The magnetic field
                        shares the symmetry of the magnetic source: components parallel to the z = 0 plane are
                        odd in z, and the component perpendicular is even.
                          We can verify our claim by showing that the symmetric fields and sources obey
                        Maxwell’s equations. At an arbitrary point z = a > 0 equation (5.1) requires

                                          ∂E z     ∂E y            ∂ H x     i
                                                 −        =−µ| z=a        − J | z=a .
                                                                             mx
                                          ∂y        ∂z              ∂t
                                              z=a      z=a             z=a
                        By the assumed symmetry condition on source and material constant we get

                                        ∂E z      ∂E y             ∂ H x     i
                                                                             mx
                                                −        =−µ| z=−a        + J | z=−a .
                                         ∂y    z=a  ∂z    z=a       ∂t    z=a
                        If our claim holds regarding the field behavior, then

                                                    ∂E z         ∂E z
                                                             =−        ,
                                                     ∂y          ∂y
                                                        z=−a         z=a

                                                    ∂E y         ∂E y
                                                             =−        ,
                                                     ∂z          ∂z
                                                        z=−a         z=a

                                                    ∂ H x        ∂ H x
                                                             =−         ,
                                                     ∂t          ∂t
                                                        z=−a         z=a
                        and we have

                                        ∂E z       ∂E y            ∂ H x       i
                                       −         +         = µ| z=−a        + J | z=−a .
                                                                               mx
                                         ∂y         ∂z              ∂t
                                             z=−a      z=−a             z=−a
                        So this component of Faraday’s lawis satisfied. With similar reasoning we can showthat
                        the symmetric sources and fields satisfy (5.2)–(5.6) as well.
                        © 2001 by CRC Press LLC
   358   359   360   361   362   363   364   365   366   367   368