Page 366 - Electromagnetics
P. 366

˜
                              ˜
                        source I 0 /2 located at y = h and a line source −I 0 /2 located at y =−h. We solve each
                        of these problems by exploiting the appropriate symmetry, and superpose the results to
                        find the solution to the original problem.
                          For the even-symmetric case, we begin by using (4.407) to represent the impressed
                        field:
                                                         ∞+ j
                                                    ˜ I 0 (ω)
                                                 ω ˜µ         e − jk y |y−h|  + e − jk y |y+h|
                                    ˜ i              2                           − jk x x
                                    E (x, y,ω) =−                               e    dk x .
                                     z
                                                   2π                2k y
                                                        −∞+ j
                        For y > h this becomes
                                                            ∞+ j
                                                       ˜ I 0 (ω)
                                                    ω ˜µ         2 cos k y h
                                       ˜ i              2                − jk y y − jk x x
                                      E (x, y,ω) =−                     e    e    dk x .
                                        z
                                                      2π           2k y
                                                          −∞+ j
                        The secondary (scattered) field consists of waves propagating in both the ±y-directions:
                                                 ∞+ j
                                             1
                                 ˜ s                    +      − jk y y  −     jk y y  − jk x x
                                E (x, y,ω) =          A (k x ,ω)e   + A (k x ,ω)e  e    dk x .  (5.7)
                                  z
                                             2π
                                               −∞+ j
                                                                                            s
                                                                                       i
                        The impressed field is even about y = 0. Since the total field E z = E + E must be
                                                                                            z
                                                                                       z
                        even in y (E z is parallel to the plane y = 0), the scattered field must also be even. Thus,
                        A = A and the total field is for y > h
                         +
                               −
                                           ∞+ j
                                                                      ˜
                                        1                             I 0 (ω) 2 cos k y h
                           ˜                       +                               − jk y y  − jk x x
                           E z (x, y,ω) =        2A (k x ,ω) cos k y y − ω ˜µ     e      e    dk x .
                                       2π                              2     2k y
                                         −∞+ j
                                                                           ˜
                        Nowthe electric field must obey the boundary condition E z = 0 at y =±d. However,
                             ˜
                        since E z is even the satisfaction of this condition at y = d automatically implies its
                        satisfaction at y =−d. So we set
                                   ∞+ j
                                1                             ˜ I 0 (ω) 2 cos k y h  − jk y d     − jk x x
                                            +
                                         2A (k x ,ω) cos k y d − ω ˜µ      e     e    dk x = 0
                               2π                               2    2k y
                                  −∞+ j
                        and invoke the Fourier integral theorem to get
                                                            ˜ I 0 (ω) cos k y h e − jk y d
                                                +
                                              A (k x ,ω) = ω ˜µ              .
                                                              2   2k y  cos k y d
                        The total field for this case is
                                                            ∞+ j
                                                       ˜ I 0 (ω)
                                                    ω ˜µ          e − jk y |y−h|  + e − jk y |y+h|
                                       ˜                2
                                      E z (x, y,ω) =−                               −
                                                      2π                 2k y
                                                          −∞+ j
                                                   2 cos k y h e − jk y d     − jk x x
                                                −                cos k y y e  dk x .
                                                     2k y  cos k y d
                        For the odd-symmetric case the impressed field is
                                                         ∞+ j
                                                    ˜ I 0 (ω)
                                                 ω ˜µ         e  − jk y |y−h|  − e − jk y |y+h|
                                    ˜ i              2                           − jk x x
                                   E (x, y,ω) =−                                e    dk x ,
                                     z
                                                   2π                2k y
                                                       −∞+ j
                        © 2001 by CRC Press LLC
   361   362   363   364   365   366   367   368   369   370   371