Page 367 - Electromagnetics
P. 367

which for y > h is
                                                           ∞+ j
                                                       ˜ I 0 (ω)
                                                   ω ˜µ         2 j sin k y h
                                      ˜ i               2                 − jk y y − jk x x
                                      E (x, y,ω) =−                      e    e    dk x .
                                       z
                                                     2π            2k y
                                                          −∞+ j
                        The scattered field has the form of (5.7) but must be odd. Thus A +  =−A −  and the
                        total field for y > h is
                                          ∞+ j
                                                                      ˜
                                       1                              I 0 (ω) 2 j sin k y h
                           ˜                        +                               − jk y y  − jk x x
                          E z (x, y,ω) =        2 jA (k x ,ω) sin k y y − ω ˜µ     e     e     dk x .
                                      2π                               2     2k y
                                         −∞+ j
                               ˜
                                                            +
                        Setting E z = 0 at z = d and solving for A we find that the total field for this case is
                                                            ∞+ j
                                                       ˜ I 0 (ω)
                                                    ω ˜µ          e − jk y |y−h|  − e − jk y |y+h|
                                       ˜                2
                                      E z (x, y,ω) =−                               −
                                                      2π                 2k y
                                                          −∞+ j
                                                   2 j sin k y h e − jk y d     − jk x x
                                                −                sin k y y e  dk x .
                                                     2k y  sin k y d
                        Adding the fields for the two cases we find that
                                                       ∞+ j
                                                 ˜
                                              ω ˜µI 0 (ω)     e − jk y |y−h|
                                 ˜                                   − jk x x
                                 E z (x, y,ω) =−                    e    dk x +
                                                2π            2k y
                                                     −∞+ j
                                           ∞+ j
                                     ˜
                                  ω ˜µI 0 (ω)       cos k y h cos k y y  sin k y h sin k y y     e − jk y d  − jk x x
                                +                             + j                   e    dk x ,
                                     2π             cos k y d       sin k y d   2k y
                                         −∞+ j
                                                                                                (5.8)
                        which is a superposition of impressed and scattered fields.



                        5.2   Solenoidal–lamellar decomposition
                          We nowdiscuss the decomposition of a general vector field into a lamellar component
                        having zero curl and a solenoidal component having zero divergence. This is known as a
                        Helmholtz decomposition.If V is any vector field then we wish to write
                                                        V = V s + V l ,                         (5.9)

                        where V s and V l are the solenoidal and lamellar components of V. Formulas expressing
                        these components in terms of V are obtained as follows. We first write V s in terms of a
                        “vector potential” A as
                                                         V s =∇ × A.                           (5.10)
                        This is possible by virtue of (B.49). Similarly, we write V l in terms of a “scalar potential”
                        φ as
                                                          V l =∇φ.                             (5.11)




                        © 2001 by CRC Press LLC
   362   363   364   365   366   367   368   369   370   371   372