Page 423 - Electromagnetics
P. 423

Figure 6.3: Geometry of surface integral used to extract E at r p .


                                                  i
                                     ˜ i

                        Replacing ∇ · J with − jω ˜ρ from the continuity equation and using the divergence
                        theorem on the second term on the right-hand side, we then have
                                             1

                                 ˜  ˜ i                 2 ˜ i      i                  ˜ i
                                 E p · J dV =  ˜ p ·   (k J G + jω ˜ρ ∇ G) dV −   (ˆ n · J )∇ GdS .
                                             ˜    c
                             V −V δ                V −V δ                      S+S δ
                        Lastly we examine

                                                                   ˜ i
                                                  ˜ i
                                               ˜
                                              H p · J dV = jω      J ·∇ × (G ˜ p) dV .



                                                   m                m
                                          V −V δ               V −V δ
                              ˜ i
                                                               ˜ i
                                             ˜ i



                        Use of J ·∇ × (G ˜ p) = J · (∇ G × ˜ p) = ˜ p · (J ×∇ G) gives
                               m              m                 m

                                                ˜  ˜ i                ˜ i
                                               H p · J dV = jω˜ p ·   J ×∇ GdV .
                                                    m
                                                                       m
                                           V −V δ                 V −V δ
                          We now substitute all terms into (6.5) and note that each term involves a dot product
                        with ˜ p. Since ˜ p is arbitrary we have

                                                         ˜
                                           ˜                              ˜
                               −      (ˆ n × E) ×∇ G + (ˆ n · E)∇ G − jω ˜µ(ˆ n × H)G dS +
                                  S+S δ
                                  1                                       ˜ ρ i
                                                ˜              ˜ i                    ˜ i
                               +    c     (dl · H)∇ G =       −J ×∇ G +    c  ∇ G − jω ˜µJ G dV .
                                                                m
                                 jω˜                                      ˜
                                        a +  b          V −V δ
                        The electric field may be extracted from the above expression by letting the radius of
                        the excluding volume V δ recede to zero. We first consider the surface integral over S δ .
                                                                            ˆ
                        Examining Figure 6.3 we see that  R = |r p − r |= δ, ˆ n =−R, and


                                                                                 ˆ
                                            d  
  e − jkR      
 1 + jkδ        R
                                                              ˆ           − jkδ
                                ∇ G(r |r p ) =         ∇ R = R           e    ≈     as δ → 0.
                                            dR   4π R             4πδ 2         δ 2
                                 ˜
                        Assuming E is continuous at r = r p we can write


                                                 ˜
                                                                                ˜
                                                               ˜





                                   − lim    (ˆ n × E) ×∇ G + (ˆ n · E)∇ G − jω ˜µ(ˆ n × H)G dS =
                                     δ→0
                                         S δ

                                          1            R         R              1   2
                                                       ˆ         ˆ
                                                  ˜
                                              ˆ
                                                            ˆ
                                                                          ˆ
                                                                              ˜
                                                               ˜
                                   lim       (R × E) ×   + (R · E)  − jω ˜µ(R × H)  δ d  =
                                   δ→0    4π           δ 2       δ 2            δ

                                               ˆ
                                                                                ˜
                                                  ˜ ˆ
                                                                   ˆ
                                                                     ˜ ˆ
                                                         ˆ
                                                            ˆ ˜
                                          1
                                   lim       −(R · E)R + (R · R)E + (R · E)R d  = E(r p ).
                                   δ→0    4π
                        © 2001 by CRC Press LLC
   418   419   420   421   422   423   424   425   426   427   428