Page 525 - Electromagnetics
P. 525

Dyadic representation
                                                                ˆ
                                                 ¯ a = ˆρa ρρ ˆρ + ˆρa ρφ φ + ˆρa ρz ˆ z +
                                                     ˆ      ˆ    ˆ   ˆ
                                                  + φa φρ ˆρ + φa φφ φ + φa φz ˆ z +
                                                               ˆ
                                                  + ˆ za zρ ˆρ + ˆ za zφ φ + ˆ za zz ˆ z       (D.50)

                                                       ˆ
                                                                         ˆ



                                             ¯ a = ˆρa + φa + ˆ za = a ρ ˆρ + a φ φ + a z ˆ z  (D.51)
                                                              z
                                                   ρ
                                                         φ
                                                                  ˆ
                                                   a = a ρρ ˆρ + a ρφ φ + a ρz ˆ z             (D.52)

                                                    ρ
                                                                  ˆ

                                                   a = a φρ ˆρ + a φφ φ + a φz ˆ z             (D.53)
                                                    φ
                                                                 ˆ

                                                    a = a zρ ˆρ + a zφ φ + a zz ˆ z            (D.54)
                                                     z
                                                                  ˆ
                                                   a ρ = a ρρ ˆρ + a φρ φ + a zρ ˆ z           (D.55)
                                                                  ˆ
                                                   a φ = a ρφ ˆρ + a φφ φ + a zφ ˆ z           (D.56)
                                                                 ˆ
                                                    a z = a ρz ˆρ + a φz φ + a zz ˆ z          (D.57)
                        Differential operations
                                                              ˆ
                                                   dl = ˆρ dρ + φρ dφ + ˆ z dz                 (D.58)
                                                       dV = ρ dρ dφ dz                         (D.59)

                                                       dS ρ = ρ dφ dz,                         (D.60)
                                                       dS φ = dρ dz,                           (D.61)
                                                        dS z = ρ dρ dφ                         (D.62)


                                                         ∂ f    1 ∂ f   ∂ f
                                                              ˆ
                                                  ∇ f = ˆρ  + φ     + ˆ z                      (D.63)
                                                         ∂ρ     ρ ∂φ    ∂z

                                                      1 ∂ 	    
  1 ∂ F φ  ∂ F z
                                               ∇· F =      ρF ρ +       +                      (D.64)
                                                      ρ ∂ρ        ρ ∂φ    ∂z
                                                                   ˆ

                                                                ˆρ ρφ ˆ z
                                                            1      ∂
                                                    ∇× F =      ∂  ∂φ  ∂                       (D.65)
                                                                ∂ρ
                                                            ρ         ∂z

                                                               F ρ ρF φ F z
                                                                      2     2
                                                     1 ∂    ∂ f    1 ∂ f   ∂ f
                                               2
                                              ∇ f =       ρ     +        +                     (D.66)
                                                                   2
                                                    ρ ∂ρ    ∂ρ    ρ ∂φ 2   ∂z 2

                              2        2     2 ∂F φ   F ρ   ˆ   2     2 ∂ F ρ  F φ     2
                            ∇ F = ˆρ ∇ F ρ −       −      + φ ∇ F φ +       −      + ˆ z∇ F z  (D.67)
                                              2
                                                                       2
                                             ρ ∂φ     ρ 2             ρ ∂φ     ρ 2
                       © 2001 by CRC Press LLC
   520   521   522   523   524   525   526   527   528   529   530